論文の概要: Variational quantization for state space models
- arxiv url: http://arxiv.org/abs/2404.11117v1
- Date: Wed, 17 Apr 2024 07:01:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 15:04:52.083872
- Title: Variational quantization for state space models
- Title(参考訳): 状態空間モデルに対する変分量子化
- Authors: Etienne David, Jean Bellot, Sylvain Le Corff,
- Abstract要約: 何千もの異種時系列を収集する大規模なデータセットを用いてタスクを予測することは、多くの分野において重要な統計問題である。
離散状態空間隠蔽マルコフモデルと最近のニューラルネットワークアーキテクチャを組み合わせた新しい予測モデルを提案し,ベクトル量子化変分オートエンコーダにインスパイアされたトレーニング手順を提案する。
提案手法の性能を複数のデータセットを用いて評価し,他の最先端ソリューションよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 3.9762742923544456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting tasks using large datasets gathering thousands of heterogeneous time series is a crucial statistical problem in numerous sectors. The main challenge is to model a rich variety of time series, leverage any available external signals and provide sharp predictions with statistical guarantees. In this work, we propose a new forecasting model that combines discrete state space hidden Markov models with recent neural network architectures and training procedures inspired by vector quantized variational autoencoders. We introduce a variational discrete posterior distribution of the latent states given the observations and a two-stage training procedure to alternatively train the parameters of the latent states and of the emission distributions. By learning a collection of emission laws and temporarily activating them depending on the hidden process dynamics, the proposed method allows to explore large datasets and leverage available external signals. We assess the performance of the proposed method using several datasets and show that it outperforms other state-of-the-art solutions.
- Abstract(参考訳): 何千もの異種時系列を収集する大規模なデータセットを用いた予測タスクは、多くの分野において重要な統計問題である。
主な課題は、様々な時系列をモデル化し、利用可能な外部信号を利用し、統計的保証のある鋭い予測を提供することである。
本研究では、離散状態空間隠れマルコフモデルと最近のニューラルネットワークアーキテクチャを組み合わせた予測モデルを提案し、ベクトル量子化変分オートエンコーダにインスパイアされたトレーニング手順を提案する。
本研究では,潜伏状態のパラメータと放射分布のパラメータを学習するための2段階の訓練手順と観察結果から,潜伏状態のばらつきによる離散的後部分布を導入する。
発光法則の集合を学習し、隠されたプロセスのダイナミクスによって一時的に活性化することにより、提案手法は大規模なデータセットを探索し、利用可能な外部信号を活用することができる。
提案手法の性能を複数のデータセットを用いて評価し,他の最先端ソリューションよりも優れていることを示す。
関連論文リスト
- Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion [61.03681839276652]
拡散強制(Diffusion Forcing)は、拡散モデルをトレーニングし、トークンの集合に独立した音レベルを付与する、新たなトレーニングパラダイムである。
因果的次トーケン予測モデルを訓練して1つまたは複数の未来のトークンを生成することで、シーケンス生成モデルに拡散強制を適用する。
論文 参考訳(メタデータ) (2024-07-01T15:43:25Z) - MG-TSD: Multi-Granularity Time Series Diffusion Models with Guided Learning Process [26.661721555671626]
本稿では,最先端の予測性能を実現する新しい多粒度時系列(MG-TSD)モデルを提案する。
われわれのアプローチは外部データに頼らず、様々な領域にまたがって汎用的で適用可能である。
論文 参考訳(メタデータ) (2024-03-09T01:15:03Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Variational latent discrete representation for time series modelling [0.0]
我々は、離散状態がマルコフ連鎖である潜在データモデルを導入し、高速なエンドツーエンドトレーニングを可能にした。
生成モデルの性能は,ビル管理データセットと一般公開されているElectricity Transformerデータセットに基づいて評価する。
論文 参考訳(メタデータ) (2023-06-27T08:15:05Z) - Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations [15.797295258800638]
本稿では,実世界のデータでしばしば発生する課題に対処するために,時系列計算と予測のための新しいモデリング手法を提案する。
本手法はシリーズの進化力学の連続時間依存モデルに依存する。
メタラーニングアルゴリズムによって駆動される変調機構は、観測されたタイムウインドウを超えて、見えないサンプルや外挿への適応を可能にする。
論文 参考訳(メタデータ) (2023-06-09T13:20:04Z) - Diffusion-based Time Series Imputation and Forecasting with Structured
State Space Models [2.299617836036273]
我々は、条件拡散モデルと構造化状態空間モデルという2つの新興技術に依存した計算モデルであるSSSDを提唱した。
我々は、SSSDが最先端の確率的計算値と一致し、幅広いデータセットと異なる欠点シナリオで性能を予測できることを実証する。
論文 参考訳(メタデータ) (2022-08-19T15:29:43Z) - Robust Audio Anomaly Detection [10.75127981612396]
提案されたアプローチは、トレーニングデータセットにラベル付き異常が存在することを前提としません。
時間力学は、注意機構を付加した繰り返し層を用いてモデル化される。
ネットワークの出力は、外向きの頑健な確率密度関数である。
論文 参考訳(メタデータ) (2022-02-03T17:19:42Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
本稿では,将来の軌道予測における2つの重要な課題に対処する手法を提案する。
エージェントの数に関係なく、トレーニングデータと予測と一定時間の推測の両方において、マルチモーダリティ。
論文 参考訳(メタデータ) (2020-07-26T08:17:10Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
本稿では,時系列データにおける高変数の取得に優れる新しい確率的シーケンスモデルを提案する。
提案手法では,時間潜時変数を用いて基礎となるデータパターンに関する情報をキャプチャする。
提案手法の有効性を,合成および実世界のシーケンシャルデータに示す。
論文 参考訳(メタデータ) (2020-02-24T19:30:32Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。