論文の概要: A Novel ICD Coding Framework Based on Associated and Hierarchical Code Description Distillation
- arxiv url: http://arxiv.org/abs/2404.11132v1
- Date: Wed, 17 Apr 2024 07:26:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 14:55:00.604321
- Title: A Novel ICD Coding Framework Based on Associated and Hierarchical Code Description Distillation
- Title(参考訳): Associated and Hierarchical Code Description Distillationに基づく新しいICD符号化フレームワーク
- Authors: Bin Zhang, Junli Wang,
- Abstract要約: ICD符号化は、ノイズの多い医療文書入力による多ラベルテキスト分類の問題である。
近年のICD符号化の進歩により、医療用ノートやコードに付加的なデータや知識ベースを組み込むことで、性能が向上した。
コード表現学習の改善と不適切なコード代入の回避を目的とした,関連および階層型コード記述蒸留(AHDD)に基づく新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 6.524062529847299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: ICD(International Classification of Diseases) coding involves assigning ICD codes to patients visit based on their medical notes. ICD coding is a challenging multilabel text classification problem due to noisy medical document inputs. Recent advancements in automated ICD coding have enhanced performance by integrating additional data and knowledge bases with the encoding of medical notes and codes. However, most of them ignore the code hierarchy, leading to improper code assignments. To address these problems, we propose a novel framework based on associated and hierarchical code description distillation (AHDD) for better code representation learning and avoidance of improper code assignment.we utilize the code description and the hierarchical structure inherent to the ICD codes. Therefore, in this paper, we leverage the code description and the hierarchical structure inherent to the ICD codes. The code description is also applied to aware the attention layer and output layer. Experimental results on the benchmark dataset show the superiority of the proposed framework over several state-of-the-art baselines.
- Abstract(参考訳): ICD (International Classification of Diseases) コーディングは、ICD符号を診療録に基づいて患者に割り当てることを含む。
ICD符号化は、ノイズの多い医療文書入力による多ラベルテキスト分類の問題である。
近年のICD符号化の進歩により、医療用ノートやコードに付加的なデータや知識ベースを組み込むことで、性能が向上した。
しかし、そのほとんどはコード階層を無視しており、不適切なコード割り当てにつながります。
これらの問題に対処するために、コード表現学習の改善と不適切なコード代入の回避を目的とした、関連的および階層的コード記述蒸留(AHDD)に基づく新しいフレームワークを提案する。
そこで本研究では,ICDコード固有のコード記述と階層構造を利用する。
コード記述は、注意層と出力層を認識するためにも適用されます。
ベンチマークデータセットの実験結果は、いくつかの最先端ベースラインよりも提案したフレームワークの方が優れていることを示している。
関連論文リスト
- Auxiliary Knowledge-Induced Learning for Automatic Multi-Label Medical Document Classification [22.323705343864336]
3つのアイデアを取り入れた新しいICDインデクシング手法を提案する。
臨床ノートから情報を収集するために,多レベル深部拡張残差畳み込みエンコーダを用いた。
我々はICD分類の課題を医療記録の補助的知識で定式化する。
論文 参考訳(メタデータ) (2024-05-29T13:44:07Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [59.32609948217718]
我々は,Large Language Models(LLM)ベースのコード生成のための新しい透かし技術であるCodeIPを提案する。
CodeIPは、生成されたコードのセマンティクスを保持しながら、マルチビット情報の挿入を可能にする。
論文 参考訳(メタデータ) (2024-04-24T04:25:04Z) - CoRelation: Boosting Automatic ICD Coding Through Contextualized Code
Relation Learning [56.782963838838036]
我々は,ICDコード表現の学習を促進するために,文脈的かつ柔軟なフレームワークである新しい手法を提案する。
提案手法では,可能なすべてのコード関係をモデル化する際の臨床ノートのコンテキストを考慮した,依存型学習パラダイムを採用している。
論文 参考訳(メタデータ) (2024-02-24T03:25:28Z) - A Two-Stage Decoder for Efficient ICD Coding [10.634394331433322]
ICD符号の予測のための2段階復号機構を提案する。
まず、まず親コードを予測し、その子コードを前回の予測に基づいて予測する。
公開MIMIC-IIIデータセット実験により,本モデルが単一モデル設定で良好に動作することを示す。
論文 参考訳(メタデータ) (2023-05-27T17:25:13Z) - Towards Accurate Image Coding: Improved Autoregressive Image Generation
with Dynamic Vector Quantization [73.52943587514386]
既存のベクトル量子化(VQ)ベースの自己回帰モデルは、2段階生成パラダイムに従う。
画像領域を可変長符号に符号化する動的量子化VAE(DQ-VAE)を提案する。
論文 参考訳(メタデータ) (2023-05-19T14:56:05Z) - HieNet: Bidirectional Hierarchy Framework for Automated ICD Coding [2.9373912230684573]
International Classification of Diseases (ICD) は、医学記録の分類コードである。
本研究では,その課題に対処する新しい双方向階層フレームワーク(HieNet)を提案する。
具体的には、コードのコリレーションをキャプチャするパーソナライズされたPageRankルーチンと、コードの階層的表現をキャプチャする双方向階層パスエンコーダと、予測のセマンティック検索空間を狭めるプログレッシブ予測手法を提案する。
論文 参考訳(メタデータ) (2022-12-09T14:51:12Z) - Soft-Labeled Contrastive Pre-training for Function-level Code
Representation [127.71430696347174]
textbfSoft-labeled contrastive pre-training framework with two positive sample construction method。
大規模コードコーパスにおけるコード間の関連性を考慮すると、ソフトラベル付きコントラスト付き事前学習は、きめ細かいソフトラベルを得ることができる。
SCodeRは、7つのデータセットで4つのコード関連タスクに対して、最先端のパフォーマンスを新たに達成する。
論文 参考訳(メタデータ) (2022-10-18T05:17:37Z) - Code Synonyms Do Matter: Multiple Synonyms Matching Network for
Automatic ICD Coding [26.718721379738813]
我々は、EMRにおけるコード表現がICDにおける記述と異なるという観察に基づいて、コード同義語はより包括的な知識を提供することができると論じる。
より優れたコード表現学習のために,同義語を利用する複数の同義語マッチングネットワークを提案し,最終的にコード分類を支援する。
論文 参考訳(メタデータ) (2022-03-03T04:57:08Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z) - COSEA: Convolutional Code Search with Layer-wise Attention [90.35777733464354]
我々は、畳み込みニューラルネットワークを階層的注意で活用し、コード固有の構造論理をキャプチャする新しいディープラーニングアーキテクチャ、COSEAを提案する。
COSEAは、コード検索タスクの最先端メソッドよりも大幅に改善できる。
論文 参考訳(メタデータ) (2020-10-19T13:53:38Z) - A Label Attention Model for ICD Coding from Clinical Text [14.910833190248319]
自動ICD符号化のための新しいラベルアテンションモデルを提案する。
ICDコードに関連するテキストフラグメントの様々な長さと相互依存の両方を扱うことができる。
本モデルでは,3つのベンチマークMIMICデータセットに対して,最先端の新たな結果が得られる。
論文 参考訳(メタデータ) (2020-07-13T12:42:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。