論文の概要: Prompt-Guided Generation of Structured Chest X-Ray Report Using a Pre-trained LLM
- arxiv url: http://arxiv.org/abs/2404.11209v1
- Date: Wed, 17 Apr 2024 09:45:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 14:35:31.428497
- Title: Prompt-Guided Generation of Structured Chest X-Ray Report Using a Pre-trained LLM
- Title(参考訳): プレトレーニングLDMを用いた胸部X線構造レポートのプロンプトガイド生成
- Authors: Hongzhao Li, Hongyu Wang, Xia Sun, Hua He, Jun Feng,
- Abstract要約: 事前学習型大言語モデル(LLM)を用いた胸部X線構造レポート作成のためのプロンプト誘導手法を提案する。
まず,胸部X線で解剖学的領域を同定し,重要な視覚要素に焦点を絞った文を生成する。
また,検出された解剖学を,解剖学的理解を LLM に伝達するテキストプロンプトに変換する。
- 参考スコア(独自算出の注目度): 5.766695041882696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical report generation automates radiology descriptions from images, easing the burden on physicians and minimizing errors. However, current methods lack structured outputs and physician interactivity for clear, clinically relevant reports. Our method introduces a prompt-guided approach to generate structured chest X-ray reports using a pre-trained large language model (LLM). First, we identify anatomical regions in chest X-rays to generate focused sentences that center on key visual elements, thereby establishing a structured report foundation with anatomy-based sentences. We also convert the detected anatomy into textual prompts conveying anatomical comprehension to the LLM. Additionally, the clinical context prompts guide the LLM to emphasize interactivity and clinical requirements. By integrating anatomy-focused sentences and anatomy/clinical prompts, the pre-trained LLM can generate structured chest X-ray reports tailored to prompted anatomical regions and clinical contexts. We evaluate using language generation and clinical effectiveness metrics, demonstrating strong performance.
- Abstract(参考訳): 医療報告生成は、画像からの放射線学的記述を自動化し、医師の負担を軽減し、エラーを最小限にする。
しかし、現在の方法では、明確な臨床報告のための構造的アウトプットと医師の相互作用が欠如している。
本手法では,事前学習した大言語モデル (LLM) を用いて胸部X線構造レポートを生成する。
まず,胸部X線で解剖学的領域を同定し,重要な視覚要素に焦点を絞った文章を生成する。
また,検出された解剖学を,解剖学的理解を LLM に伝達するテキストプロンプトに変換する。
さらに、臨床コンテキストは、LLMに相互作用性と臨床要件を強調するよう促す。
解剖学に焦点を当てた文と解剖学的/臨床的プロンプトを統合することで、前訓練されたLCMは、解剖学的領域と臨床状況に合わせた構造化された胸部X線レポートを生成することができる。
言語生成と臨床効果指標を用いて評価を行い,高い性能を示した。
関連論文リスト
- Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
VLM(Vision-Language Models)は、医用画像を分析し、自然言語の相互作用に関与することによって、臨床医を支援する。
VLMはしばしば「幻覚的」な振る舞いを示し、文脈的マルチモーダル情報に基づかないテキスト出力を生成する。
本稿では,臨床推論の象徴的表現を用いて医療知識にVLMを基盤とする新たなアライメントアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T23:19:28Z) - Structural Entities Extraction and Patient Indications Incorporation for Chest X-ray Report Generation [10.46031380503486]
胸部X線レポート生成のための新しい方法である textbfStructural textbfEntities 抽出法と textbfIncorporation (SEI) を考案した。
我々は、レポートにおけるプレゼンテーションスタイルの語彙を排除するために、構造エンティティ抽出(SEE)アプローチを採用する。
我々は,X線画像,類似の歴史的症例,患者固有の指標からの情報を統合するクロスモーダル融合ネットワークを提案する。
論文 参考訳(メタデータ) (2024-05-23T01:29:47Z) - Self-supervised vision-langage alignment of deep learning representations for bone X-rays analysis [53.809054774037214]
本稿では, 骨X線とフレンチレポートを組み合わせることで, 視覚言語による事前訓練を活用することを提案する。
骨X線表現にまつわる埋め込み空間を形成するために、フランスの報告を統合する最初の研究である。
論文 参考訳(メタデータ) (2024-05-14T19:53:20Z) - Grounded Knowledge-Enhanced Medical VLP for Chest X-Ray [12.239249676716247]
医用視覚言語プレトレーニングは、医用画像とテキストのドメイン汎用表現を学習するための有望なアプローチとして現れてきた。
胸部X線に対する知識強化型医療ビジョン言語事前学習フレームワークを提案する。
以上の結果から,胸部X線像とX線像との整合性を改善するために接地機構を組み込むことの利点が示唆された。
論文 参考訳(メタデータ) (2024-04-23T05:16:24Z) - Attribute Structuring Improves LLM-Based Evaluation of Clinical Text
Summaries [62.32403630651586]
大規模言語モデル(LLM)は、正確な臨床テキスト要約を生成する可能性を示しているが、根拠付けと評価に関する問題に苦慮している。
本稿では、要約評価プロセスを構成するAttribute Structuring(AS)を用いた一般的な緩和フレームワークについて検討する。
ASは、臨床テキスト要約における人間のアノテーションと自動メトリクスの対応性を一貫して改善する。
論文 参考訳(メタデータ) (2024-03-01T21:59:03Z) - RaDialog: A Large Vision-Language Model for Radiology Report Generation
and Conversational Assistance [53.20640629352422]
会話型AIツールは、所定の医療画像に対して臨床的に正しい放射線学レポートを生成し、議論することができる。
RaDialogは、ラジオロジーレポート生成と対話ダイアログのための、初めて徹底的に評価され、公開された大きな視覚言語モデルである。
本手法は,報告生成における最先端の臨床的正確性を実現し,報告の修正や質問への回答などのインタラクティブなタスクにおいて,印象的な能力を示す。
論文 参考訳(メタデータ) (2023-11-30T16:28:40Z) - IMITATE: Clinical Prior Guided Hierarchical Vision-Language Pre-training [15.04212780946932]
階層的視覚言語アライメントを用いた医療報告から構造情報を学習するための新しいフレームワークImitateを提案する。
このフレームワークは胸部X線(CXR)画像から多段階の視覚特徴を導出し、これらの特徴を階層的な医療報告に符号化された記述的および決定的テキストと別々に整列する。
論文 参考訳(メタデータ) (2023-10-11T10:12:43Z) - Controllable Chest X-Ray Report Generation from Longitudinal
Representations [13.151444796296868]
レポートをスピードアップする1つの戦略は、自動レポートシステムを統合することである。
自動放射線診断への従来のアプローチは、入力として事前の研究を提供していないのが一般的である。
筆者らは,(1) 縦断学習 -- マルチモーダルレポート生成モデルに提供可能な関節長手表現に,現在のスキャン情報と先行スキャン情報を整合し,活用する手法を提案する。(2) 文解剖学的ドロップアウト -- レポート生成モデルを用いて,入力として与えられた解剖学的領域のサブセットに対応する元のレポートからのみ文を予測する訓練戦略。
論文 参考訳(メタデータ) (2023-10-09T17:22:58Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
我々は、Show-Attend-Tell と GPT-3 という2つの言語モデルを組み合わせて、包括的で記述的な放射線学記録を生成する。
提案モデルは、Open-I、MIMIC-CXR、汎用MS-COCOの2つの医療データセットで検証される。
論文 参考訳(メタデータ) (2022-09-28T10:27:10Z) - FlexR: Few-shot Classification with Language Embeddings for Structured
Reporting of Chest X-rays [37.15474283789249]
構造化された報告テンプレートにおける文によって定義される臨床所見を予測する手法を提案する。
この手法は、胸部X線と関連する自由テキストラジオグラフィーレポートを用いて、対照的な言語画像モデルを訓練することを含む。
その結果, 訓練用画像レベルのアノテーションが限られている場合でも, 胸部X線における重症度評価の構造化された報告タスクを達成できることが示唆された。
論文 参考訳(メタデータ) (2022-03-29T16:31:39Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。