Quantum Circuit Unoptimization
- URL: http://arxiv.org/abs/2311.03805v2
- Date: Wed, 5 Jun 2024 15:15:20 GMT
- Title: Quantum Circuit Unoptimization
- Authors: Yusei Mori, Hideaki Hakoshima, Kyohei Sudo, Toshio Mori, Kosuke Mitarai, Keisuke Fujii,
- Abstract summary: We construct a quantum algorithmic primitive called quantum circuit unoptimization.
It makes a given quantum circuit complex by introducing some redundancies while preserving circuit equivalence.
We use quantum circuit unoptimization to generate compiler benchmarks and evaluate circuit optimization performance.
- Score: 0.6449786007855248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimization of circuits is an essential task for both quantum and classical computers to improve their efficiency. In contrast, classical logic optimization is known to be difficult, and a lot of heuristic approaches have been developed so far. In this study, we define and construct a quantum algorithmic primitive called quantum circuit unoptimization, which makes a given quantum circuit complex by introducing some redundancies while preserving circuit equivalence, i.e., the inverse operation of circuit optimization. Using quantum circuit unoptimization, we propose the quantum circuit equivalence test, a decision problem contained both in the NP and BQP classes but is not trivially included in the P class. Furthermore, as a practical application, we construct concrete unoptimization recipes to generate compiler benchmarks and evaluate circuit optimization performance using Qiskit and Pytket. Our numerical simulations demonstrate that quantum circuit unoptimizer systematically generates redundant circuits that are challenging for compilers to optimize, which can be used to compare the performance of different compilers and improve them. We also offer potential applications of quantum circuit unoptimization, such as generating quantum advantageous machine learning datasets and quantum computer fidelity benchmarks.
Related papers
- Symmetry-preserved cost functions for variational quantum eigensolver [0.0]
Hybrid quantum-classical variational algorithms are considered ideal for noisy quantum computers.
We propose encoding symmetry preservation directly into the cost function, enabling more efficient use of Hardware-Efficient Ans"atze.
arXiv Detail & Related papers (2024-11-25T20:33:47Z) - Optimizing Quantum Circuits, Fast and Slow [7.543907169342984]
We present a framework for thinking of rewriting and resynthesis as abstract circuit transformations.
We then present a radically simple algorithm, GUOQ, for optimizing quantum circuits.
arXiv Detail & Related papers (2024-11-06T18:34:35Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Surrogate optimization of variational quantum circuits [1.0546736060336612]
Variational quantum eigensolvers are touted as a near-term algorithm capable of impacting many applications.
Finding algorithms and methods to improve convergence is important to accelerate the capabilities of near-term hardware for VQE.
arXiv Detail & Related papers (2024-04-03T18:00:00Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
We compare the performance of classicals across a series of partially-randomized tasks.
We focus on local zeroth-orders due to their generally favorable performance and query-efficiency on quantum systems.
arXiv Detail & Related papers (2023-10-14T02:13:26Z) - Parallel circuit implementation of variational quantum algorithms [0.0]
We present a method to split quantum circuits of variational quantum algorithms (VQAs) to allow for parallel training and execution.
We apply this specifically to optimization problems, where inherent structures from the problem can be identified.
We show that not only can our method address larger problems, but that it is also possible to run full VQA models while training parameters using only one slice.
arXiv Detail & Related papers (2023-04-06T12:52:29Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
We propose that quantum circuits can be modeled as queuing networks.
Our method is scalable and has the potential speed and precision necessary for large scale quantum circuit compilation.
arXiv Detail & Related papers (2021-06-26T10:55:52Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.