Consisaug: A Consistency-based Augmentation for Polyp Detection in Endoscopy Image Analysis
- URL: http://arxiv.org/abs/2404.11355v1
- Date: Wed, 17 Apr 2024 13:09:44 GMT
- Title: Consisaug: A Consistency-based Augmentation for Polyp Detection in Endoscopy Image Analysis
- Authors: Ziyu Zhou, Wenyuan Shen, Chang Liu,
- Abstract summary: We introduce Consisaug, an innovative and effective methodology to augment data that leverages deep learning.
We implement our Consisaug on five public polyp datasets and at three backbones, and the results show the effectiveness of our method.
- Score: 3.716941460306804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Colorectal cancer (CRC), which frequently originates from initially benign polyps, remains a significant contributor to global cancer-related mortality. Early and accurate detection of these polyps via colonoscopy is crucial for CRC prevention. However, traditional colonoscopy methods depend heavily on the operator's experience, leading to suboptimal polyp detection rates. Besides, the public database are limited in polyp size and shape diversity. To enhance the available data for polyp detection, we introduce Consisaug, an innovative and effective methodology to augment data that leverages deep learning. We utilize the constraint that when the image is flipped the class label should be equal and the bonding boxes should be consistent. We implement our Consisaug on five public polyp datasets and at three backbones, and the results show the effectiveness of our method.
Related papers
- COLON: The largest COlonoscopy LONg sequence public database [0.0]
Polyps, as the main biomarker of the disease, are detected, localized, and characterized through colonoscopy procedures.
Currently, publicly available polyp datasets have allowed significant advances in computational strategies dedicated to characterizing non-parametric polyp shapes.
This work introduces COLON: the largest COlonoscopy LONg sequence dataset with around of 30 thousand polyp labeled frames and 400 thousand background frames.
arXiv Detail & Related papers (2024-03-01T16:50:16Z) - ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic
Polyp Detection [88.4359020192429]
Existing methods either involve computationally expensive context aggregation or lack prior modeling of polyps, resulting in poor performance in challenging cases.
In this paper, we propose the Enhanced CenterNet with Contrastive Learning (ECC-PolypDet), a two-stage training & end-to-end inference framework.
Box-assisted Contrastive Learning (BCL) during training to minimize the intra-class difference and maximize the inter-class difference between foreground polyps and backgrounds, enabling our model to capture concealed polyps.
In the fine-tuning stage, we introduce the IoU-guided Sample Re-weighting
arXiv Detail & Related papers (2024-01-10T07:03:41Z) - Cancer-Net PCa-Data: An Open-Source Benchmark Dataset for Prostate
Cancer Clinical Decision Support using Synthetic Correlated Diffusion Imaging
Data [75.77035221531261]
Cancer-Net PCa-Data is an open-source benchmark dataset of volumetric CDI$s$ imaging data of PCa patients.
Cancer-Net PCa-Data is the first-ever public dataset of CDI$s$ imaging data for PCa.
arXiv Detail & Related papers (2023-11-20T10:28:52Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - BoxPolyp:Boost Generalized Polyp Segmentation Using Extra Coarse
Bounding Box Annotations [79.17754846553866]
We propose a boosted BoxPolyp model to make full use of both accurate mask and extra coarse box annotations.
In practice, box annotations are applied to alleviate the over-fitting issue of previous polyp segmentation models.
Our proposed model outperforms previous state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2022-12-07T07:45:50Z) - Self-Supervised U-Net for Segmenting Flat and Sessile Polyps [63.62764375279861]
Development of colorectal polyps is one of the earliest signs of cancer.
Early detection and resection of polyps can greatly increase survival rate to 90%.
Computer-Aided Diagnosis systems(CADx) has been proposed that detect polyps by processing the colonoscopic videos.
arXiv Detail & Related papers (2021-10-17T09:31:20Z) - Advances in Artificial Intelligence to Reduce Polyp Miss Rates during
Colonoscopy [0.7619404259039283]
We introduce a new deep neural network architecture, which achieves state-of-the-art performance for polyp segmentation.
Our algorithm could be integrated into colonoscopy practice and assist gastroenterologists by reducing the number of polyps missed.
arXiv Detail & Related papers (2021-05-16T16:10:32Z) - AG-CUResNeSt: A Novel Method for Colon Polyp Segmentation [0.0]
This paper proposes a novel neural network architecture called AG-CUResNeSt, which enhances Coupled UNets using the robust ResNeSt backbone and attention gates.
We show that our proposed method achieves state-of-the-art accuracy compared to existing methods.
arXiv Detail & Related papers (2021-05-02T06:36:36Z) - Colonoscopy Polyp Detection and Classification: Dataset Creation and
Comparative Evaluations [12.160373952983319]
Colorectal cancer (CRC) is one of the most common types of cancer with a high mortality rate.
Computer-aided polyp detection and classification system can significantly increase the effectiveness of colonoscopy.
This work can serve as a baseline for future research in polyp detection and classification.
arXiv Detail & Related papers (2021-04-22T01:57:35Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z) - Colorectal Polyp Segmentation by U-Net with Dilation Convolution [9.840695333927496]
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a leading cause of cancer deaths in the United States.
Currently, the most common way for colorectal polyp detection and precancerous pathology is the colonoscopy.
We propose a novel end-to-end deep learning framework for the colorectal polyp segmentation.
arXiv Detail & Related papers (2019-12-26T23:27:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.