AG-CUResNeSt: A Novel Method for Colon Polyp Segmentation
- URL: http://arxiv.org/abs/2105.00402v2
- Date: Tue, 4 May 2021 18:57:57 GMT
- Title: AG-CUResNeSt: A Novel Method for Colon Polyp Segmentation
- Authors: Dinh Viet Sang, Tran Quang Chung, Phan Ngoc Lan, Dao Viet Hang, Dao
Van Long, Nguyen Thi Thuy
- Abstract summary: This paper proposes a novel neural network architecture called AG-CUResNeSt, which enhances Coupled UNets using the robust ResNeSt backbone and attention gates.
We show that our proposed method achieves state-of-the-art accuracy compared to existing methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Colorectal cancer is among the most common malignancies and can develop from
high-risk colon polyps. Colonoscopy is an effective screening tool to detect
and remove polyps, especially in the case of precancerous lesions. However, the
missing rate in clinical practice is relatively high due to many factors. The
procedure could benefit greatly from using AI models for automatic polyp
segmentation, which provide valuable insights for improving colon polyp
detection. However, precise segmentation is still challenging due to variations
of polyps in size, shape, texture, and color. This paper proposes a novel
neural network architecture called AG-CUResNeSt, which enhances Coupled UNets
using the robust ResNeSt backbone and attention gates. The network is capable
of effectively combining multi-level features to yield accurate polyp
segmentation. Experimental results on five popular benchmark datasets show that
our proposed method achieves state-of-the-art accuracy compared to existing
methods.
Related papers
- Consisaug: A Consistency-based Augmentation for Polyp Detection in Endoscopy Image Analysis [3.716941460306804]
We introduce Consisaug, an innovative and effective methodology to augment data that leverages deep learning.
We implement our Consisaug on five public polyp datasets and at three backbones, and the results show the effectiveness of our method.
arXiv Detail & Related papers (2024-04-17T13:09:44Z) - ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic
Polyp Detection [88.4359020192429]
Existing methods either involve computationally expensive context aggregation or lack prior modeling of polyps, resulting in poor performance in challenging cases.
In this paper, we propose the Enhanced CenterNet with Contrastive Learning (ECC-PolypDet), a two-stage training & end-to-end inference framework.
Box-assisted Contrastive Learning (BCL) during training to minimize the intra-class difference and maximize the inter-class difference between foreground polyps and backgrounds, enabling our model to capture concealed polyps.
In the fine-tuning stage, we introduce the IoU-guided Sample Re-weighting
arXiv Detail & Related papers (2024-01-10T07:03:41Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - BoxPolyp:Boost Generalized Polyp Segmentation Using Extra Coarse
Bounding Box Annotations [79.17754846553866]
We propose a boosted BoxPolyp model to make full use of both accurate mask and extra coarse box annotations.
In practice, box annotations are applied to alleviate the over-fitting issue of previous polyp segmentation models.
Our proposed model outperforms previous state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2022-12-07T07:45:50Z) - Stepwise Feature Fusion: Local Guides Global [14.394421688712052]
We propose a new State-Of-The-Art model for medical image segmentation, the SSFormer, which uses a pyramid Transformer encoder to improve the generalization ability of models.
Our proposed Progressive Locality Decoder can be adapted to the pyramid Transformer backbone to emphasize local features and attention dispersion.
arXiv Detail & Related papers (2022-03-07T10:36:38Z) - Self-Supervised U-Net for Segmenting Flat and Sessile Polyps [63.62764375279861]
Development of colorectal polyps is one of the earliest signs of cancer.
Early detection and resection of polyps can greatly increase survival rate to 90%.
Computer-Aided Diagnosis systems(CADx) has been proposed that detect polyps by processing the colonoscopic videos.
arXiv Detail & Related papers (2021-10-17T09:31:20Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
In clinical practice, precise polyp segmentation provides important information in the early detection of colorectal cancer.
Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder.
We propose a multi-scale subtraction network (MSNet) to segment polyp from colonoscopy image.
arXiv Detail & Related papers (2021-08-11T07:54:07Z) - NeoUNet: Towards accurate colon polyp segmentation and neoplasm
detection [0.0]
We propose a fine-grained formulation for the polyp segmentation problem.
Our formulation aims to not only segment polyp regions, but also identify those at high risk of malignancy with high accuracy.
We present a UNet-based neural network architecture called NeoUNet, along with a hybrid loss function to solve this problem.
arXiv Detail & Related papers (2021-07-11T11:10:12Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z) - Colorectal Polyp Segmentation by U-Net with Dilation Convolution [9.840695333927496]
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a leading cause of cancer deaths in the United States.
Currently, the most common way for colorectal polyp detection and precancerous pathology is the colonoscopy.
We propose a novel end-to-end deep learning framework for the colorectal polyp segmentation.
arXiv Detail & Related papers (2019-12-26T23:27:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.