Open-system eigenstate thermalization in a noninteracting integrable model
- URL: http://arxiv.org/abs/2404.11360v2
- Date: Mon, 5 Aug 2024 08:51:21 GMT
- Title: Open-system eigenstate thermalization in a noninteracting integrable model
- Authors: Krzysztof Ptaszynski, Massimiliano Esposito,
- Abstract summary: We argue that even in fully integrable models, the system observables exhibit thermalization when the system-bath setup is in a typical eigenstate of its Hamiltonian.
Our findings suggest that chaos and nonintegrability are not the sole drivers of thermalization.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Notable attention has been devoted to the problem of thermalization of observables in isolated quantum setups by individual eigenstates. Here, we approach this issue from an open quantum system perspective, by considering isolated setups which consists of a small system coupled to a macroscopic bath. We argue that in such a case, even in fully integrable models, the system observables exhibit thermalization when the system-bath setup is in a typical eigenstate of its Hamiltonian (which is called weak eigenstate thermalization). This occurs unless thermalization is suppressed by localization due to strong coupling. We illustrate our claim for a single fermionic level coupled to a noninteracting fermionic bath. We further show that upon quenching the system Hamiltonian, the system occupancy typically relaxes to the thermal value corresponding to the new Hamiltonian. Finally, we demonstrate that system thermalization also arises for a system coupled to a bath initialized in a typical eigenstate of its Hamiltonian. Our findings suggest that chaos and nonintegrability are not the sole drivers of thermalization and complementary approaches are needed to offer a more comprehensive understanding of how statistical mechanics emerges.
Related papers
- Theory of Eigenstate Thermalisation [0.0]
The eigenstate thermalization hypothesis (ETH) of Deutsch and Srednicki suggests that this is possible because each eigenstate of the full quantum system acts as a thermal bath to its subsystems.
Our analysis provides a derivation of statistical mechanics which requires neither the concepts of ergodicity or typicality, nor that of entropy.
arXiv Detail & Related papers (2024-06-03T15:41:16Z) - Unifying Collisional Models and the Monte Carlo Metropolis Method:
Algorithms for Dynamics of Open Quantum Systems [0.0]
Collisional models are a category of microscopic open quantum system models that have seen growing use in studying quantum thermalization.
We demonstrate that, when each bath ancilla is prepared in a thermal state with a discrete spectrum that matches the energy eigenstate transitions of the system, the system dynamics generated by the collisional model framework are identical to those generated under the Metropolis algorithm.
arXiv Detail & Related papers (2024-03-01T00:01:22Z) - Nonperturbative renormalization of quantum thermodynamics from weak to
strong couplings [2.542198147027801]
By solving the exact master equation of open quantum systems, we formulate the quantum thermodynamics from weak to strong couplings.
We find that the exact solution of the reduced density matrix of these systems approaches a Gibbs-type state in the steady-state limit for both the weak and strong system-reservoir coupling strengths.
arXiv Detail & Related papers (2022-05-17T06:25:03Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Quantum collisional thermostats [0.0]
Collisional reservoirs are a major tool for modelling open quantum systems.
We present a formal solution of the problem in one dimension and for flat interaction potentials.
We then introduce two approximations of the scattering map that preserve these symmetries and, consequently, thermalize the system.
arXiv Detail & Related papers (2021-09-22T09:46:25Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.