Theory of Eigenstate Thermalisation
- URL: http://arxiv.org/abs/2406.01448v1
- Date: Mon, 3 Jun 2024 15:41:16 GMT
- Title: Theory of Eigenstate Thermalisation
- Authors: Tobias Helbig, Tobias Hofmann, Ronny Thomale, Martin Greiter,
- Abstract summary: The eigenstate thermalization hypothesis (ETH) of Deutsch and Srednicki suggests that this is possible because each eigenstate of the full quantum system acts as a thermal bath to its subsystems.
Our analysis provides a derivation of statistical mechanics which requires neither the concepts of ergodicity or typicality, nor that of entropy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: If we prepare an isolated, interacting quantum system in an eigenstate and perturb a local observable at an initial time, its expectation value will relax towards a thermal expectation value, even though the time evolution of the system is deterministic. The eigenstate thermalization hypothesis (ETH) of Deutsch and Srednicki suggests that this is possible because each eigenstate of the full quantum system acts as a thermal bath to its subsystems, such that the reduced density matrices of the subsystems resemble thermal density matrices. Here, we use the observation that the eigenvalue distribution of interacting quantum systems is a Gaussian under very general circumstances, and Dyson Brownian motion random matrix theory, to derive the ETH and thereby elevate it from hypothesis to theory. Our analysis provides a derivation of statistical mechanics which neither requires the concepts of ergodicity or typicality, nor that of entropy. Thermodynamic equilibrium follows solely from the applicability of quantum mechanics to large systems and the absence of integrability.
Related papers
- Open-system eigenstate thermalization in a noninteracting integrable model [0.0]
We study the problem of thermalization of observables in isolated quantum setups by individual eigenstates.
Our findings suggest that nonintegrability is not the sole driver of thermalization.
arXiv Detail & Related papers (2024-04-17T13:16:42Z) - Quantum Fisher Information for Different States and Processes in Quantum
Chaotic Systems [77.34726150561087]
We compute the quantum Fisher information (QFI) for both an energy eigenstate and a thermal density matrix.
We compare our results with earlier results for a local unitary transformation.
arXiv Detail & Related papers (2023-04-04T09:28:19Z) - Non-Hermitian Hamiltonians Violate the Eigenstate Thermalization
Hypothesis [0.0]
Eigenstate Thermalization Hypothesis (ETH) represents a cornerstone in the theoretical understanding of the emergence of thermal behavior in closed quantum systems.
We investigate what extent the ETH holds in non-Hermitian many-body systems.
We come to the surprising conclusion that the fluctuations between eigenstates is of equal order to the average, indicating no thermalization.
arXiv Detail & Related papers (2023-03-06T19:17:15Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Thermalization of locally perturbed many-body quantum systems [0.0]
We analytically demonstrate that systems satisfying the weak eigenstate thermalization hypothesis exhibit thermalization for two very natural classes of far-from-equilibrium initial conditions.
arXiv Detail & Related papers (2022-02-01T08:16:05Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Canonical density matrices from eigenstates of mixed systems [0.0]
We study the emergence of thermal states in the regime of a quantum analog of a mixed phase space.
Our system can be tuned by means of a single parameter from quantum integrability to quantum chaos.
arXiv Detail & Related papers (2021-03-10T10:19:05Z) - Thermalization of isolated quantum many-body system and the role of entanglement [1.0485739694839669]
We show that entanglement may act as a thermalizing agent, not universally but particularly.
In particular, we show that the expectation values of an observable in entangled energy eigenstates and its marginals are equivalent to the microcanonical and canonical averages of the observable.
arXiv Detail & Related papers (2020-09-22T09:37:38Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.