論文の概要: Fast Polypharmacy Side Effect Prediction Using Tensor Factorisation
- arxiv url: http://arxiv.org/abs/2404.11374v2
- Date: Mon, 09 Dec 2024 12:39:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:47:41.514942
- Title: Fast Polypharmacy Side Effect Prediction Using Tensor Factorisation
- Title(参考訳): テンソル因子化を用いた高速多剤副作用予測
- Authors: Oliver Lloyd, Yi Liu, Tom R. Gaunt,
- Abstract要約: テンソル因子化モデルにより,多剤副作用予測における最先端性能が達成できることを実証する。
ベストモデル (SimplE) は, 963側効果に対して0.978 AUROC, 0.971 AUPRC, 1.000 AP@50の中央値を得た。
- 参考スコア(独自算出の注目度): 2.631060597686179
- License:
- Abstract: Motivation: Adverse reactions from drug combinations are increasingly common, making their accurate prediction a crucial challenge in modern medicine. Laboratory-based identification of these reactions is insufficient due to the combinatorial nature of the problem. While many computational approaches have been proposed, tensor factorisation models have shown mixed results, necessitating a thorough investigation of their capabilities when properly optimized. Results: We demonstrate that tensor factorisation models can achieve state-of-the-art performance on polypharmacy side effect prediction, with our best model (SimplE) achieving median scores of 0.978 AUROC, 0.971 AUPRC, and 1.000 AP@50 across 963 side effects. Notably, this model reaches 98.3\% of its maximum performance after just two epochs of training (approximately 4 minutes), making it substantially faster than existing approaches while maintaining comparable accuracy. We also find that incorporating monopharmacy data as self-looping edges in the graph performs marginally better than using it to initialize embeddings. Availability and Implementation: All code used in the experiments is available in our GitHub repository (https://doi.org/10.5281/zenodo.10684402). The implementation was carried out using Python 3.8.12 with PyTorch 1.7.1, accelerated with CUDA 11.4 on NVIDIA GeForce RTX 2080 Ti GPUs. Contact: oliver.lloyd@bristol.ac.uk Supplementary information: Supplementary data, including precision-recall curves and F1 curves for the best performing model, are available at Bioinformatics online.
- Abstract(参考訳): モチベーション(Motivation): 薬物の組み合わせによる逆反応がますます一般的になり、その正確な予測が現代医学において重要な課題となっている。
実験室によるこれらの反応の同定は、問題の組合せの性質のため不十分である。
多くの計算手法が提案されているが、テンソル分解モデルは複雑な結果を示しており、適切に最適化されたときにその能力について徹底的に調査する必要がある。
結果: テンソル因子化モデルが多剤副作用予測における最先端性能を達成することを実証し, 最良モデル(SimplE)は963副作用に対して0.978 AUROC, 0.971 AUPRC, 1.000 AP@50の中央値を得た。
特に、このモデルは2時間(約4分)のトレーニングの後、最大性能の98.3\%に達する。
また, グラフ内の自己ループエッジとしてモノファーマシーデータを組み込むことで, 埋め込みを初期化するよりも, 極端に優れていることがわかった。
可用性と実装: 実験で使用されたコードは、GitHubリポジトリで利用可能です(https://doi.org/10.5281/zenodo.10684402)。
実装はPython 3.8.12とPyTorch 1.7.1を使って行われ、NVIDIA GeForce RTX 2080 Ti GPU上でCUDA 11.4で高速化された。
連絡先: oliver.lloyd@bristol.ac.uk 補助情報: 正確なリコール曲線や最高のパフォーマンスモデルのためのF1曲線を含む追加データは、オンラインのBioinformaticsで利用可能である。
関連論文リスト
- Efficient Brain Tumor Classification with Lightweight CNN Architecture: A Novel Approach [0.0]
MRI画像を用いた脳腫瘍の分類は、早期かつ正確な検出が患者の予後に大きな影響を及ぼす医療診断において重要である。
近年のディープラーニング(DL)の進歩は将来性を示しているが、多くのモデルは精度と計算効率のバランスに苦慮している。
本稿では,分離可能な畳み込みと圧縮・励振ブロック(SEブロック)を統合した新しいモデルアーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-02-01T21:06:42Z) - Phikon-v2, A large and public feature extractor for biomarker prediction [42.52549987351643]
我々は、DINOv2を用いて視覚変換器を訓練し、このモデルの1つのイテレーションを公開して、Phikon-v2と呼ばれるさらなる実験を行う。
Phikon-v2は、公開されている組織学のスライドをトレーニングしながら、以前リリースしたモデル(Phikon)を上回り、プロプライエタリなデータでトレーニングされた他の病理学基盤モデル(FM)と同等に動作します。
論文 参考訳(メタデータ) (2024-09-13T20:12:29Z) - EffiSegNet: Gastrointestinal Polyp Segmentation through a Pre-Trained EfficientNet-based Network with a Simplified Decoder [0.8892527836401773]
EffiSegNetは、トレーニング済みの畳み込みニューラルネットワーク(CNN)をバックボーンとして、トランスファーラーニングを活用する新しいセグメンテーションフレームワークである。
Kvasir-SEGデータセットを用いて消化管ポリープセグメンテーションタスクの評価を行い,その成果を得た。
論文 参考訳(メタデータ) (2024-07-23T08:54:55Z) - Neural Networks with (Low-Precision) Polynomial Approximations: New Insights and Techniques for Accuracy Improvement [13.406378419824003]
非ポリノミカル関数を近似に置き換えることは、プライバシ保護機械学習の標準的なプラクティスである。
ニューラルネットワーク(PANN)の近似と呼ばれる結果のニューラルネットワークは、高度な暗号システムと互換性がある。
PANNにおける近似誤差の効果について説明する。
PANNの推測精度を向上させるための手法を提案する。
論文 参考訳(メタデータ) (2024-02-17T08:54:25Z) - SMaRt: Improving GANs with Score Matching Regularity [94.81046452865583]
生成的敵ネットワーク(GAN)は通常、基礎となる多様体が複雑である非常に多様なデータから学ぶのに苦労する。
スコアマッチングは、生成したデータポイントを実データ多様体へ持続的にプッシュする能力のおかげで、この問題に対する有望な解決策であることを示す。
スコアマッチング規則性(SMaRt)を用いたGANの最適化を提案する。
論文 参考訳(メタデータ) (2023-11-30T03:05:14Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
本研究では,リンゴ樹の合成データセットを生成するための安定拡散2.1-baseの有用性について検討する。
我々は、現実世界のリンゴ検出データセットでリンゴを予測するために、YOLOv5mオブジェクト検出モデルを訓練する。
その結果、実世界の画像でトレーニングされたベースラインモデルと比較して、生成データでトレーニングされたモデルはわずかに性能が劣っていることがわかった。
論文 参考訳(メタデータ) (2023-06-20T09:46:01Z) - FastIF: Scalable Influence Functions for Efficient Model Interpretation
and Debugging [112.19994766375231]
影響関数は、テスト予測のためのトレーニングデータポイントの「影響」を近似する。
fastifは、実行時間を大幅に改善する関数に影響を与えるための、単純な修正セットです。
本実験はモデル解釈とモデル誤差の修正における影響関数の可能性を示す。
論文 参考訳(メタデータ) (2020-12-31T18:02:34Z) - A Generative Model to Synthesize EEG Data for Epileptic Seizure
Prediction [3.8271082752302137]
本稿では, 合成脳波サンプルを生成するための深層畳み込み生成対向ネットワークを提案する。
我々は合成データ、すなわち1クラスSVMと、畳み込みてんかん発作予測器(CESP)と呼ばれる新しい提案を2つの手法で検証する。
以上の結果から,CESPモデルでは78.11%,88.21%,FPR0.27/h,0.14/hの感度が得られた。
論文 参考訳(メタデータ) (2020-12-01T12:00:36Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
我々は予測時間バッチ正規化と呼び、共変量シフト時のモデル精度とキャリブレーションを大幅に改善する。
予測時間バッチ正規化は、既存の最先端アプローチに相補的な利点をもたらし、ロバスト性を向上させることを示します。
この手法は、事前トレーニングと併用して使用すると、さまざまな結果が得られるが、より自然なタイプのデータセットシフトでは、パフォーマンスが良くないようだ。
論文 参考訳(メタデータ) (2020-06-19T05:08:43Z) - Assessing Graph-based Deep Learning Models for Predicting Flash Point [52.931492216239995]
グラフベースのディープラーニング(GBDL)モデルは初めてフラッシュポイントを予測するために実装された。
MPNNの平均R2と平均絶対誤差(MAE)は、それぞれ2.3%低、2.0K高である。
論文 参考訳(メタデータ) (2020-02-26T06:10:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。