Prediction of Unmanned Surface Vessel Motion Attitude Based on CEEMDAN-PSO-SVM
- URL: http://arxiv.org/abs/2404.11443v1
- Date: Wed, 17 Apr 2024 14:53:03 GMT
- Title: Prediction of Unmanned Surface Vessel Motion Attitude Based on CEEMDAN-PSO-SVM
- Authors: Zhuoya Geng, Jianmei Chen, Wanqiang Zhu,
- Abstract summary: Unmanned boats, while navigating at sea, utilize active compensation systems to mitigate wave disturbances.
This paper, based on the basic principles of waves, derives the disturbance patterns of waves on unmanned boats from the wave energy spectrum.
A combined prediction model is designed to predict the motion attitude of unmanned boats.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unmanned boats, while navigating at sea, utilize active compensation systems to mitigate wave disturbances experienced by onboard instruments and equipment. However, there exists a lag in the measurement of unmanned boat attitudes, thus introducing unmanned boat motion attitude prediction to compensate for the lag in the signal acquisition process. This paper, based on the basic principles of waves, derives the disturbance patterns of waves on unmanned boats from the wave energy spectrum. Through simulation analysis of unmanned boat motion attitudes, motion attitude data is obtained, providing experimental data for subsequent work. A combined prediction model based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Particle Swarm Optimization (PSO), and Support Vector Machine (SVM) is designed to predict the motion attitude of unmanned boats. Simulation results validate its superior prediction accuracy compared to traditional prediction models. For example, in terms of mean absolute error, it improves by 17% compared to the EMD-PSO-SVM model.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
Motion planners (MPs) are crucial for safe navigation in complex urban environments.
nuPlan, a recently released MP benchmark, addresses this limitation by augmenting real-world driving logs with closed-loop simulation logic.
We present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions.
arXiv Detail & Related papers (2024-06-15T18:53:45Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
We introduce the GPT style next token motion prediction into motion prediction.
Different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations.
We propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations.
arXiv Detail & Related papers (2024-03-20T06:22:37Z) - A Data Driven Method for Multi-step Prediction of Ship Roll Motion in
High Sea States [15.840386459188169]
This paper presents a novel data-driven methodology for achieving the multi-step prediction of ship roll motion in high sea states.
A hybrid neural network, named ConvLSPTMNet, is proposed to execute long short-term memory (LSTM) and one-dimensional convolutional neural networks (CNN)
The results demonstrate that ConvNet achieves more accurate than LSTM and CNN methods in multi-step prediction of roll motion.
arXiv Detail & Related papers (2022-07-26T06:26:00Z) - Probabilistic prediction of the heave motions of a semi-submersible by a
deep learning problem model [4.903969235471705]
We extend a deep learning (DL) model to predict the heave and surge motions of a floating semi-submersible 20 to 50 seconds ahead with good accuracy.
This study extends the understanding of the DL model to predict the wave excited motions of an offshore platform.
arXiv Detail & Related papers (2021-10-09T06:26:42Z) - Ship Performance Monitoring using Machine-learning [2.1485350418225244]
The hydrodynamic performance of a sea-going ship varies over its lifespan due to factors like marine fouling and the condition of the anti-fouling paint system.
The current work uses machine-learning (ML) methods to estimate the hydrodynamic performance of a ship using the onboard recorded in-service data.
arXiv Detail & Related papers (2021-10-07T16:18:16Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
We propose a hybrid approach combining deep learning and physical motion models.
We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model.
The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.
arXiv Detail & Related papers (2021-03-11T15:21:08Z) - Motion Prediction Using Temporal Inception Module [96.76721173517895]
We propose a Temporal Inception Module (TIM) to encode human motion.
Our framework produces input embeddings using convolutional layers, by using different kernel sizes for different input lengths.
The experimental results on standard motion prediction benchmark datasets Human3.6M and CMU motion capture dataset show that our approach consistently outperforms the state of the art methods.
arXiv Detail & Related papers (2020-10-06T20:26:01Z) - A nudged hybrid analysis and modeling approach for realtime wake-vortex
transport and decay prediction [0.0]
Long short-term memory (LSTM) nudging framework for enhancement of reduced order models (ROMs) of fluid flows utilized noisy measurements for air traffic improvements.
We build on the fact that in realistic application, there are uncertainties in initial and boundary conditions, model parameters, as well as measurements.
In the presented LSTM nudging (LSTM-N) approach, we fuse forecasts from a combination of imperfect GROM and uncertain state estimates, with sparseian sensor measurements to provide more reliable predictions in a dynamical data assimilation framework.
arXiv Detail & Related papers (2020-08-05T23:47:15Z) - Predicting heave and surge motions of a semi-submersible with neural
networks [4.0097067208724955]
Long short-term memory (LSTM) -based machine learning model was developed to predict heave and surge motions of a semi-submersible.
With the help of measured waves, the prediction extended 46.5 s into future with an average accuracy close to 90%.
arXiv Detail & Related papers (2020-07-31T11:24:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.