Gaussian Process Regression for Improved Underwater Navigation
- URL: http://arxiv.org/abs/2502.16510v1
- Date: Sun, 23 Feb 2025 09:13:41 GMT
- Title: Gaussian Process Regression for Improved Underwater Navigation
- Authors: Nadav Cohen, Itzik Klein,
- Abstract summary: Doppler velocity logs (DVLs) are typically used to mitigate this drift through velocity measurements.<n>This paper proposes a data-driven alternative based on multi-output Gaussian process regression (MOGPR) to improve DVL velocity estimation.<n>We evaluate our proposed approach using real-world AUV data and compare it against LS and a state-of-the-art deep learning model, BeamsNet.
- Score: 13.221163846643607
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate underwater navigation is a challenging task due to the absence of global navigation satellite system signals and the reliance on inertial navigation systems that suffer from drift over time. Doppler velocity logs (DVLs) are typically used to mitigate this drift through velocity measurements, which are commonly estimated using a parameter estimation approach such as least squares (LS). However, LS works under the assumption of ideal conditions and does not account for sensor biases, leading to suboptimal performance. This paper proposes a data-driven alternative based on multi-output Gaussian process regression (MOGPR) to improve DVL velocity estimation. MOGPR provides velocity estimates and associated measurement covariances, enabling an adaptive integration within an error-state Extended Kalman Filter (EKF). We evaluate our proposed approach using real-world AUV data and compare it against LS and a state-of-the-art deep learning model, BeamsNet. Results demonstrate that MOGPR reduces velocity estimation errors by approximately 20% while simultaneously enhancing overall navigation accuracy, particularly in the orientation states. Additionally, the incorporation of uncertainty estimates from MOGPR enables an adaptive EKF framework, improving navigation robustness in dynamic underwater environments.
Related papers
- A Data-Driven Method for INS/DVL Alignment [2.915868985330569]
Inertial sensors and Doppler velocity logs (DVL) fusion is a promising solution for long-range underwater navigation.
We propose an end-to-end deep learning framework for the alignment process.
arXiv Detail & Related papers (2025-03-27T10:38:37Z) - AUV Acceleration Prediction Using DVL and Deep Learning [2.915868985330569]
We present an end-to-end deep learning approach to estimate the AUV acceleration vector based on past DVL velocity measurements.
Based on recorded data from sea experiments, we demonstrate that the proposed method improves acceleration vector estimation by more than 65%.
arXiv Detail & Related papers (2025-03-20T09:33:47Z) - MPVO: Motion-Prior based Visual Odometry for PointGoal Navigation [3.9974562667271507]
Visual odometry (VO) is essential for enabling accurate point-goal navigation of embodied agents in indoor environments.
Recent deep-learned VO methods show robust performance but suffer from sample inefficiency during training.
We propose a robust and sample-efficient VO pipeline based on motion priors available while an agent is navigating an environment.
arXiv Detail & Related papers (2024-11-07T15:36:49Z) - Understanding Optimization in Deep Learning with Central Flows [53.66160508990508]
We show that an RMS's implicit behavior can be explicitly captured by a "central flow:" a differential equation.
We show that these flows can empirically predict long-term optimization trajectories of generic neural networks.
arXiv Detail & Related papers (2024-10-31T17:58:13Z) - DCNet: A Data-Driven Framework for DVL Calibration [2.915868985330569]
We introduce DCNet, a data-driven framework that utilizes a two-dimensional convolution kernel in an innovative way.
We demonstrate an average improvement of 70% in accuracy and 80% improvement in calibration time, compared to the baseline approach.
Our results also open up new applications for marine robotics utilizing low-cost, high-accurate DVLs.
arXiv Detail & Related papers (2024-10-11T13:47:40Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
Various animals exhibit accurate navigation using environment cues.
Inspired by animal navigation, this work proposes a bionic and data-driven approach for long-distance underwater navigation.
The proposed approach uses measured geomagnetic data for the navigation, and requires no GPS systems or geographical maps.
arXiv Detail & Related papers (2024-02-06T13:20:56Z) - Angle Robustness Unmanned Aerial Vehicle Navigation in GNSS-Denied
Scenarios [66.05091704671503]
We present a novel angle navigation paradigm to deal with flight deviation in point-to-point navigation tasks.
We also propose a model that includes the Adaptive Feature Enhance Module, Cross-knowledge Attention-guided Module and Robust Task-oriented Head Module.
arXiv Detail & Related papers (2024-02-04T08:41:20Z) - Data-Driven Strategies for Coping with Incomplete DVL Measurements [15.619053656143564]
In real-world scenarios, incomplete Doppler velocity log measurements occur, resulting in positioning errors and mission aborts.
This paper presents a comparative analysis of two cutting-edge deep learning methodologies, namely LiBeamsNet and MissBeamNet.
We found that both deep learning architectures outperformed model-based approaches by over 16% in velocity prediction accuracy.
arXiv Detail & Related papers (2024-01-28T10:17:36Z) - Globally Optimal Event-Based Divergence Estimation for Ventral Landing [55.29096494880328]
Event sensing is a major component in bio-inspired flight guidance and control systems.
We explore the usage of event cameras for predicting time-to-contact with the surface during ventral landing.
This is achieved by estimating divergence (inverse TTC), which is the rate of radial optic flow, from the event stream generated during landing.
Our core contributions are a novel contrast maximisation formulation for event-based divergence estimation, and a branch-and-bound algorithm to exactly maximise contrast and find the optimal divergence value.
arXiv Detail & Related papers (2022-09-27T06:00:52Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
We endow the models with the capacity of predicting the future, significantly improving the results for streaming perception.
We consider multiple velocities driving scene and propose Velocity-awared streaming AP (VsAP) to jointly evaluate the accuracy.
Our simple method achieves the state-of-the-art performance on Argoverse-HD dataset and improves the sAP and VsAP by 4.7% and 8.2% respectively.
arXiv Detail & Related papers (2022-07-21T12:03:02Z) - BeamsNet: A data-driven Approach Enhancing Doppler Velocity Log
Measurements for Autonomous Underwater Vehicle Navigation [12.572597882082054]
This paper proposes BeamsNet, an end-to-end deep learning framework to regress the estimated DVL velocity vector.
Our results show that the proposed approach achieved an improvement of more than 60% in estimating the DVL velocity vector.
arXiv Detail & Related papers (2022-06-27T19:38:38Z) - Variational encoder geostatistical analysis (VEGAS) with an application
to large scale riverine bathymetry [1.2093180801186911]
Estimation of riverbed profiles, also known as bathymetry, plays a vital role in many applications.
We propose a reduced-order model (ROM) based approach that utilizes a variational autoencoder (VAE), a type of deep neural network with a narrow layer in the middle.
We have tested our inversion approach on a one-mile reach of the Savannah River, GA, USA.
arXiv Detail & Related papers (2021-11-23T08:27:48Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
We propose an Adaptive Gradient Method with Resilience and Momentum (AdaRem)
AdaRem adjusts the parameter-wise learning rate according to whether the direction of one parameter changes in the past is aligned with the direction of the current gradient.
Our method outperforms previous adaptive learning rate-based algorithms in terms of the training speed and the test error.
arXiv Detail & Related papers (2020-10-21T14:49:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.