Research on emotionally intelligent dialogue generation based on automatic dialogue system
- URL: http://arxiv.org/abs/2404.11447v1
- Date: Wed, 17 Apr 2024 14:55:03 GMT
- Title: Research on emotionally intelligent dialogue generation based on automatic dialogue system
- Authors: Jin Wang, JinFei Wang, Shuying Dai, Jiqiang Yu, Keqin Li,
- Abstract summary: This study integrates emotional intelligence technology into automated dialogue systems.
It creates a dialogue generation model with emotional intelligence through deep learning and natural language processing techniques.
- Score: 10.064417058641979
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated dialogue systems are important applications of artificial intelligence, and traditional systems struggle to understand user emotions and provide empathetic feedback. This study integrates emotional intelligence technology into automated dialogue systems and creates a dialogue generation model with emotional intelligence through deep learning and natural language processing techniques. The model can detect and understand a wide range of emotions and specific pain signals in real time, enabling the system to provide empathetic interaction. By integrating the results of the study "Can artificial intelligence detect pain and express pain empathy?", the model's ability to understand the subtle elements of pain empathy has been enhanced, setting higher standards for emotional intelligence dialogue systems. The project aims to provide theoretical understanding and practical suggestions to integrate advanced emotional intelligence capabilities into dialogue systems, thereby improving user experience and interaction quality.
Related papers
- Personality-affected Emotion Generation in Dialog Systems [67.40609683389947]
We propose a new task, Personality-affected Emotion Generation, to generate emotion based on the personality given to the dialog system.
We analyze the challenges in this task, i.e., (1) heterogeneously integrating personality and emotional factors and (2) extracting multi-granularity emotional information in the dialog context.
Results suggest that by adopting our method, the emotion generation performance is improved by 13% in macro-F1 and 5% in weighted-F1 from the BERT-base model.
arXiv Detail & Related papers (2024-04-03T08:48:50Z) - E-CORE: Emotion Correlation Enhanced Empathetic Dialogue Generation [33.57399405783864]
We propose a novel emotion correlation enhanced empathetic dialogue generation framework.
Specifically, a multi-resolution emotion graph is devised to capture context-based emotion interactions.
We then propose an emotion correlation enhanced decoder, with a novel correlation-aware aggregation and soft/hard strategy.
arXiv Detail & Related papers (2023-11-25T12:47:39Z) - Empathetic Dialogue Generation via Sensitive Emotion Recognition and
Sensible Knowledge Selection [47.60224978460442]
We propose a Serial and Emotion-Knowledge interaction (SEEK) method for empathetic dialogue generation.
We use a fine-grained encoding strategy which is more sensitive to the emotion dynamics (emotion flow) in the conversations to predict the emotion-intent characteristic of response. Besides, we design a novel framework to model the interaction between knowledge and emotion to generate more sensible response.
arXiv Detail & Related papers (2022-10-21T03:51:18Z) - Perspective-taking and Pragmatics for Generating Empathetic Responses
Focused on Emotion Causes [50.569762345799354]
We argue that two issues must be tackled at the same time: (i) identifying which word is the cause for the other's emotion from his or her utterance and (ii) reflecting those specific words in the response generation.
Taking inspiration from social cognition, we leverage a generative estimator to infer emotion cause words from utterances with no word-level label.
arXiv Detail & Related papers (2021-09-18T04:22:49Z) - Affective Decoding for Empathetic Response Generation [8.391383696266704]
We propose a technique called Affective Decoding for empathetic response generation.
Our method can effectively incorporate emotion signals during each decoding step.
Our models are perceived to be more empathetic by human evaluations.
arXiv Detail & Related papers (2021-08-18T11:48:40Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
Experiments on real-world data demonstrate that the proposed method outperforms the state-of-the-art methods in terms of both content coherence and emotion appropriateness.
arXiv Detail & Related papers (2021-06-06T06:26:15Z) - Target Guided Emotion Aware Chat Machine [58.8346820846765]
The consistency of a response to a given post at semantic-level and emotional-level is essential for a dialogue system to deliver human-like interactions.
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
arXiv Detail & Related papers (2020-11-15T01:55:37Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
Lack of external knowledge makes empathetic dialogue systems difficult to perceive implicit emotions and learn emotional interactions from limited dialogue history.
We propose to leverage external knowledge, including commonsense knowledge and emotional lexical knowledge, to explicitly understand and express emotions in empathetic dialogue generation.
arXiv Detail & Related papers (2020-09-21T09:21:52Z) - Generating Emotionally Aligned Responses in Dialogues using Affect
Control Theory [15.848210524718219]
Affect Control Theory (ACT) is a socio-mathematical model of emotions for human-human interactions.
We investigate how ACT can be used to develop affect-aware neural conversational agents.
arXiv Detail & Related papers (2020-03-07T19:31:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.