論文の概要: A Comparison of Traditional and Deep Learning Methods for Parameter Estimation of the Ornstein-Uhlenbeck Process
- arxiv url: http://arxiv.org/abs/2404.11526v3
- Date: Tue, 23 Apr 2024 16:08:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 18:36:58.245738
- Title: A Comparison of Traditional and Deep Learning Methods for Parameter Estimation of the Ornstein-Uhlenbeck Process
- Title(参考訳): Ornstein-Uhlenbeck過程のパラメータ推定における従来の学習法とディープラーニング法の比較
- Authors: Jacob Fein-Ashley,
- Abstract要約: 我々は、金融、物理学、生物学で広く使われているプロセスであるオルンシュタイン-ウレンベック法(OU)を考察する。
マルチ層パーセプトロンを用いて,OUプロセスのパラメータを推定し,その性能を従来のパラメータ推定法と比較する。
この多層パーセプトロンは,観測軌道の大規模なデータセットから,OUプロセスのパラメータを正確に推定できることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the Ornstein-Uhlenbeck (OU) process, a stochastic process widely used in finance, physics, and biology. Parameter estimation of the OU process is a challenging problem. Thus, we review traditional tracking methods and compare them with novel applications of deep learning to estimate the parameters of the OU process. We use a multi-layer perceptron to estimate the parameters of the OU process and compare its performance with traditional parameter estimation methods, such as the Kalman filter and maximum likelihood estimation. We find that the multi-layer perceptron can accurately estimate the parameters of the OU process given a large dataset of observed trajectories and, on average, outperforms traditional parameter estimation methods.
- Abstract(参考訳): 我々は、オルンシュタイン-ウレンベック過程(OU)は金融、物理学、生物学で広く使われている確率過程であると考えている。
OUプロセスのパラメータ推定は難しい問題である。
そこで我々は従来の追跡手法をレビューし、それらをディープラーニングの新たな応用と比較し、OUプロセスのパラメータを推定する。
我々はマルチ層パーセプトロンを用いてOUプロセスのパラメータを推定し、その性能をカルマンフィルタや最大推定のような従来のパラメータ推定手法と比較する。
観測軌道の大量のデータセットを与えられたOUプロセスのパラメータを,多層パーセプトロンで正確に推定することができ,平均して従来のパラメータ推定法より優れていることがわかった。
関連論文リスト
- Efficient Learning of POMDPs with Known Observation Model in Average-Reward Setting [56.92178753201331]
我々は,POMDPパラメータを信念に基づくポリシを用いて収集したサンプルから学習することのできる観測・認識スペクトル(OAS)推定手法を提案する。
提案するOAS-UCRLアルゴリズムに対して,OASプロシージャの整合性を示し,$mathcalO(sqrtT log(T)$の残差保証を証明した。
論文 参考訳(メタデータ) (2024-10-02T08:46:34Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Deep learning-based estimation of time-dependent parameters in Markov
models with application to nonlinear regression and SDEs [0.0]
本稿では,マルコフ過程の時間依存パラメータを離散サンプリングにより推定する新しい深層学習手法を提案する。
本研究は,SDEに基づくモデルパラメータ推定に寄与し,多種多様な分野の汎用ツールを提供する。
論文 参考訳(メタデータ) (2023-12-13T20:13:38Z) - Deep Learning for Fast Inference of Mechanistic Models' Parameters [0.28675177318965045]
本稿では,観測対象の力学モデルのパラメータを直接予測するために,ディープニューラルネットワーク(NN)を提案する。
本稿では,ニューラルネットワークとメカニスティックモデルを組み合わせたトレーニング手法を検討する。
ニューラルネットワークの推定値は、さらなる適合によってわずかに改善されているのに対して、これらの推定は、適合手順単独よりも測定精度が良いことがわかった。
論文 参考訳(メタデータ) (2023-12-05T22:16:54Z) - Embed and Emulate: Learning to estimate parameters of dynamical systems
with uncertainty quantification [11.353411236854582]
本稿では,高次元力学系の不確実性を考慮したパラメータ推定のための学習エミュレータについて検討する。
私たちのタスクは、基礎となるパラメータの可能性のある値の範囲を正確に見積もることです。
結合した396次元のマルチスケールロレンツ96系において,本手法は典型的なパラメータ推定法よりも優れていた。
論文 参考訳(メタデータ) (2022-11-03T01:59:20Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Smpling (AIS) は、深層生成モデルの難易度を推定するために使われる一般的なアルゴリズムである。
本稿では、フレキシブルな中間分布を持つパラメータAISプロセスを提案し、サンプリングに少ないステップを使用するようにブリッジング分布を最適化する。
我々は, 最適化AISの性能評価を行い, 深部生成モデルの限界推定を行い, 他の推定値と比較した。
論文 参考訳(メタデータ) (2022-09-27T07:58:25Z) - Neural Networks for Parameter Estimation in Intractable Models [0.0]
本稿では,最大安定過程からパラメータを推定する方法を示す。
モデルシミュレーションのデータを入力として使用し,統計的パラメータを学習するために深層ニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2021-07-29T21:59:48Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
バナジウムフローバッテリ(VRFB)のゼロ次元(0D)モデルにおけるパラメータ推定のための物理拘束型ディープニューラルネットワーク(PCDNN)を提案する。
そこで, PCDNN法は, 動作条件のモデルパラメータを推定し, 電圧の0Dモデル予測を改善することができることを示す。
また,PCDNNアプローチでは,トレーニングに使用しない操作条件のパラメータ値を推定する一般化能力が向上することが実証された。
論文 参考訳(メタデータ) (2021-06-21T23:42:58Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。