論文の概要: A Lean Simulation Framework for Stress Testing IoT Cloud Systems
- arxiv url: http://arxiv.org/abs/2404.11542v3
- Date: Mon, 3 Jun 2024 21:20:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 11:37:14.980578
- Title: A Lean Simulation Framework for Stress Testing IoT Cloud Systems
- Title(参考訳): IoTクラウドシステムのストレステストのためのリーンシミュレーションフレームワーク
- Authors: Jia Li, Behrad Moeini, Shiva Nejati, Mehrdad Sabetzadeh, Michael McCallen,
- Abstract要約: モノのインターネット(Internet of Things)は、スマートシティ、自動運転車、健康モニタリングなど、さまざまな分野のスマートデバイスを世界中に接続する。
シミュレーションはIoTシステムのテストにおいて重要な役割を果たす。
既存のIoT用のストレステストソリューションは、かなりの計算リソースを必要とするため、不適合でコストがかかる。
クラウドと通信する多数のIoTデバイスとエッジデバイスの効率的なシミュレーションを可能にする,IoTクラウドストレステスト用に設計されたリーンシミュレーションフレームワークを提案する。
- 参考スコア(独自算出の注目度): 16.004920480830858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Internet of Things connects a plethora of smart devices globally across various applications like smart cities, autonomous vehicles and health monitoring. Simulation plays a key role in the testing of IoT systems, noting that field testing of a complete IoT product may be infeasible or prohibitively expensive. This paper addresses a specific yet important need in simulation-based testing for IoT: Stress testing of cloud systems. Existing stress testing solutions for IoT demand significant computational resources, making them ill-suited and costly. We propose a lean simulation framework designed for IoT cloud stress testing which enables efficient simulation of a large array of IoT and edge devices that communicate with the cloud. To facilitate simulation construction for practitioners, we develop a domain-specific language (DSL), named IoTECS, for generating simulators from model-based specifications. We provide the syntax and semantics of IoTECS and implement IoTECS using Xtext and Xtend. We assess simulators generated from IoTECS specifications for stress testing two real-world systems: a cloud-based IoT monitoring system and an IoT-connected vehicle system. Our empirical results indicate that simulators created using IoTECS: (1)achieve best performance when configured with Docker containerization; (2)effectively assess the service capacity of our case-study systems, and (3)outperform industrial stress-testing baseline tools, JMeter and Locust, by a factor of 3.5 in terms of the number of IoT and edge devices they can simulate using identical hardware resources. To gain initial insights about the usefulness of IoTECS in practice, we interviewed two engineers from our industry partner who have firsthand experience with IoTECS. Feedback from these interviews suggests that IoTECS is effective in stress testing IoT cloud systems, saving significant time and effort.
- Abstract(参考訳): モノのインターネット(Internet of Things)は、スマートシティ、自動運転車、健康モニタリングなど、さまざまな分野のスマートデバイスを世界中に接続する。
シミュレーションはIoTシステムのテストにおいて重要な役割を果たす。
本稿は、IoTのシミュレーションベースのテストにおいて、特に重要なニーズである、クラウドシステムのストレステストに対処する。
既存のIoT用のストレステストソリューションは、かなりの計算リソースを必要とするため、不適合でコストがかかる。
クラウドと通信する多数のIoTデバイスとエッジデバイスの効率的なシミュレーションを可能にする,IoTクラウドストレステスト用に設計されたリーンシミュレーションフレームワークを提案する。
実践者のシミュレーション構築を容易にするため,モデルベース仕様からシミュレータを生成するためのドメイン固有言語であるIoTECSを開発した。
我々はIoTECSの構文とセマンティクスを提供し、XtextとXtendを使ってIoTECSを実装します。
我々は、クラウドベースのIoT監視システムとIoT接続車両システムという、2つの実世界のシステムのストレステストのためのIoTECS仕様から生成されたシミュレータを評価する。
実験結果から,(1)Dockerコンテナ化の設定時に最高のパフォーマンスを得る,(2)ケーススタディシステムのサービス容量を効果的に評価する,(3) 産業用ストレステストベースラインツールであるJMeterとLocustを,同じハードウェアリソースを使用してシミュレート可能なIoTおよびエッジデバイスの数で3.5倍に向上させる,という結果が得られた。
IoTECSの実用性に関する最初の洞察を得るために、私たちは、IoTECSを初めて経験した業界パートナの2人のエンジニアにインタビューした。
これらのインタビューからのフィードバックは、IoTECSがIoTクラウドシステムのストレステストに有効であり、かなりの時間と労力を節約できることを示している。
関連論文リスト
- IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoTエコシステムは、モーション、サーマル、ジオロケーション、イメージング、ディープ、センサー、オーディオといった、現実世界のモダリティの豊富なソースを提供する。
機械学習は、IoTデータを大規模に自動的に処理する豊富な機会を提供する。
IoTエコシステムに適した,オープンソースの大規模マルチセンサ言語モデルであるIoT-LMを紹介します。
論文 参考訳(メタデータ) (2024-07-13T08:20:37Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - MultiIoT: Benchmarking Machine Learning for the Internet of Things [70.74131118309967]
次世代の機械学習システムは、物理的世界に対する知覚と相互作用に長けなければならない。
運動、熱、位置情報、深度、無線信号、ビデオ、オーディオからの知覚データは、物理環境の状態をモデル化するためにますます使われています。
既存の取り組みは、しばしば単一の感覚的モダリティまたは予測タスクに特化している。
本稿は、12のモダリティと8つの現実世界タスクから115万以上のサンプルを含む、これまでで最も拡張的で統一されたIoTベンチマークであるMultiIoTを提案する。
論文 参考訳(メタデータ) (2023-11-10T18:13:08Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
人工知能(Artificial General Intelligence, AGI)は、人間の認知能力でタスクを理解し、学習し、実行することができる能力を持つ。
本研究は,モノのインターネットにおけるAGIの実現に向けた機会と課題を探究する。
AGIに注入されたIoTの応用スペクトルは広く、スマートグリッド、住宅環境、製造、輸送から環境モニタリング、農業、医療、教育まで幅広い領域をカバーしている。
論文 参考訳(メタデータ) (2023-09-14T05:43:36Z) - Harris Hawks Feature Selection in Distributed Machine Learning for
Secure IoT Environments [8.690178186919635]
IoT(Internet of Things)アプリケーションは、機密データを収集および転送することができる。
ハックされたIoTデバイスを検出する新しい方法を開発する必要がある。
本稿では,Hhson Hawks Optimization(HHO)とRandom Weight Network(RWN)に基づく特徴選択(FS)モデルを提案し,IoTボットネット攻撃を検出する。
論文 参考訳(メタデータ) (2023-02-20T09:38:12Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
エッジ対応産業用IoTネットワークにおける計算知能とディープラーニング(DL)の展開方法について検討する。
本稿では,新しいマルチエグジットベースフェデレーションエッジ学習(ME-FEEL)フレームワークを提案する。
特に、提案されたME-FEELは、非常に限られたリソースを持つ産業用IoTネットワークにおいて、最大32.7%の精度を達成することができる。
論文 参考訳(メタデータ) (2021-10-28T08:14:57Z) - Reliable Fleet Analytics for Edge IoT Solutions [0.0]
AIoTアプリケーションのエッジで機械学習を容易にするためのフレームワークを提案する。
コントリビューションは、大規模にフリート分析を提供するためのサービス、ツール、メソッドを含むアーキテクチャである。
本稿では,大学キャンパスの部屋でiotデバイスを用いた実験を行うことで,フレームワークの予備検証を行う。
論文 参考訳(メタデータ) (2021-01-12T11:28:43Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study a edge intelligence-based IoT network that a set of edge server learn a shared model using federated learning (FL)。
フェデレーションエッジインテリジェンス(FEI)と呼ばれる新しいフレームワークを提案し、エッジサーバがIoTネットワークのエネルギーコストに応じて必要なデータサンプル数を評価できるようにする。
提案アルゴリズムがIoTネットワークのトポロジ的情報を漏洩したり開示したりしないことを示す。
論文 参考訳(メタデータ) (2020-11-25T12:51:59Z) - Machine learning and data analytics for the IoT [8.39035688352917]
機械学習解析におけるIoT生成データの処理方法について概観する。
我々は、IoTアプリケーションが他のIoTアプリケーションから適応的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-30T07:38:31Z) - Personalized Federated Learning for Intelligent IoT Applications: A
Cloud-Edge based Framework [12.199870302894439]
IoT(Internet of Things)は、現代生活のさまざまな側面に広く浸透している。
この記事では、インテリジェントなIoTアプリケーションのためのクラウドエッジアーキテクチャにおいて、パーソナライズされたフェデレーション付き学習フレームワークを推奨します。
論文 参考訳(メタデータ) (2020-02-25T05:11:06Z) - IoT Behavioral Monitoring via Network Traffic Analysis [0.45687771576879593]
この論文は、IoTのネットワーク行動パターンをプロファイリングする技術を開発する上で、私たちの努力の成果である。
我々は、交通パターンの属性で訓練された、堅牢な機械学習ベースの推論エンジンを開発する。
99%以上の精度で28台のIoTデバイスのリアルタイム分類を実演する。
論文 参考訳(メタデータ) (2020-01-28T23:13:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。