論文の概要: A Deep Dive into Large Language Models for Automated Bug Localization and Repair
- arxiv url: http://arxiv.org/abs/2404.11595v1
- Date: Wed, 17 Apr 2024 17:48:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 12:56:30.595873
- Title: A Deep Dive into Large Language Models for Automated Bug Localization and Repair
- Title(参考訳): バグの自動局所化と修復のための大規模言語モデルへの深い取り組み
- Authors: Soneya Binta Hossain, Nan Jiang, Qiang Zhou, Xiaopeng Li, Wen-Hao Chiang, Yingjun Lyu, Hoan Nguyen, Omer Tripp,
- Abstract要約: 大規模言語モデル(LLM)は、自動プログラム修復(APR)など、様々なソフトウェアエンジニアリングタスクにおいて顕著な効果を示している。
本研究では,LSMを用いた自動バグ修正について深く検討する。
異なるLLMを用いてバグの局所化と修正を分離することにより、多様なコンテキスト情報の効果的な統合が可能になる。
Toggleは、CodeXGLUEコード改善ベンチマークで、新しい最先端(SOTA)パフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 12.756202755547024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have shown impressive effectiveness in various software engineering tasks, including automated program repair (APR). In this study, we take a deep dive into automated bug fixing utilizing LLMs. In contrast to many deep learning-based APR methods that assume known bug locations, rely on line-level localization tools, or address bug prediction and fixing in one step, our approach uniquely employs LLMs to predict bug location at the token level and subsequently utilizes them for bug fixing. This methodological separation of bug localization and fixing using different LLMs enables effective integration of diverse contextual information and improved incorporation of inductive biases. We introduce Toggle: Token-Granulated Bug Localization and Repair, a comprehensive program repair framework that integrates a bug localization model, an adjustment unit, and a bug-fixing model. Toggle takes a buggy function as input and generates a complete corrected function. We investigate various styles of prompting to the bug fixing model to identify the most effective prompts that better utilize the inductive bias and significantly outperform others. Toggle achieves the new state-of-the-art (SOTA) performance on the CodeXGLUE code refinement benchmark, and exhibits better and comparable performance on several other widely-used APR datasets, including Defects4J.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自動プログラム修復(APR)など、様々なソフトウェアエンジニアリングタスクにおいて顕著な効果を示している。
本研究では,LSMを用いた自動バグ修正について深く検討する。
既知のバグ位置を仮定したり、ラインレベルのローカライズツールに依存する、あるいは1ステップでバグの予測と修正を行う、ディープラーニングベースのAPRメソッドとは対照的に、当社のアプローチでは、トークンレベルでのバグ位置を予測するためにLSMを独自に使用し、その後バグ修正に利用しています。
異なるLLMを用いたバグローカライゼーションと修正の方法論は,多様なコンテキスト情報の効果的な統合と帰納的バイアスの取り込みの改善を可能にする。
Toggle: Token-Granulated Bug Localization and repairは、バグローカライゼーションモデル、調整ユニット、バグ修正モデルを統合する包括的なプログラム修復フレームワークである。
Toggleはバギー関数を入力として、完全な修正関数を生成する。
本稿では, バグ修正モデルに対して, 誘導バイアスをより有効に活用し, 他よりも著しく優れる最も効果的なプロンプトを特定するための, 様々な手法について検討する。
Toggleは、CodeXGLUEコードリファインメントベンチマークにおける新しい最先端(SOTA)パフォーマンスを実現し、Defects4Jを含む、他の広く使用されているAPRデータセットで、より良く、同等のパフォーマンスを示す。
関連論文リスト
- An Empirical Study on LLM-based Agents for Automated Bug Fixing [2.433168823911037]
大規模な言語モデル (LLM) と LLM ベースのエージェントが自動的にバグを修正するために適用されている。
自動バグ修正のためのSWE-bench Liteベンチマークにおいて,プロプライエタリでオープンソースな7つのシステムについて検討した。
論文 参考訳(メタデータ) (2024-11-15T14:19:15Z) - A Comprehensive Survey of AI-Driven Advancements and Techniques in Automated Program Repair and Code Generation [0.0]
最近27の論文がレビューされ、2つのグループに分けられた。
最初のグループは、意味的エラーの特定を含む、バグの検出と修復のための新しいメソッドで構成されている。
2つ目のグループはコード生成に精通しており、プログラミングとタスク固有のモデルのために微調整された汎用LLMの概要を提供している。
また、識別子認識トレーニング、命令レベルでの微調整、セマンティックコード構造の導入など、コード生成を改善する方法も提示されている。
論文 参考訳(メタデータ) (2024-11-12T06:47:54Z) - Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
正規化勾配差(NGDiff)アルゴリズムを導入し、目的間のトレードオフをよりよく制御できるようにする。
本研究では,TOFUおよびMUSEデータセットにおける最先端の未学習手法において,NGDiffの優れた性能を実証的に実証し,理論的解析を行った。
論文 参考訳(メタデータ) (2024-10-29T14:41:44Z) - Subtle Errors Matter: Preference Learning via Error-injected Self-editing [59.405145971637204]
eRror-Injected Self-Editing (RISE) と呼ばれる新しい好み学習フレームワークを提案する。
RISEは定義済みの微妙な誤りを正しい解の部分的なトークンに注入し、エラー軽減のためにハードペアを構築する。
RISEの有効性を検証する実験では、Qwen2-7B-Instructでは、GSM8Kでは3.0%、MATHでは7.9%が顕著に改善された。
論文 参考訳(メタデータ) (2024-10-09T07:43:38Z) - Revisiting Evolutionary Program Repair via Code Language Model [11.711739409758476]
本稿では,多目的進化アルゴリズムをCLMと統合し,Javaプロジェクトのマルチロケーションバグを修正するARJA-CLMを提案する。
また,提案手法は,CLMが候補文を生成するための,アクセス可能なフィールドとメソッドに関する追加情報により,プロンプトを充実させる。
論文 参考訳(メタデータ) (2024-08-20T01:57:45Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
大規模言語モデル(LLM)はますます強力になってきていますが、それでも顕著ですが微妙な弱点があります。
従来のベンチマークアプローチでは、特定のモデルの欠陥を徹底的に特定することはできない。
さまざまなタスクにまたがるLLMの弱点を自動的に露呈する統合フレームワークであるAutoDetectを導入する。
論文 参考訳(メタデータ) (2024-06-24T15:16:45Z) - An Empirical Evaluation of Pre-trained Large Language Models for Repairing Declarative Formal Specifications [5.395614997568524]
本稿では,アロイの宣言的仕様を修復するためのLarge Language Models (LLMs) の能力について,体系的に検討する。
本稿では, 補修エージェントとプロンプトエージェントを組み合わせた, 二重エージェントLLMフレームワークを統合した新しい補修パイプラインを提案する。
本研究は, LLM, 特に GPT-4 変種が, 実行時およびトークン使用率の限界が増大しているにもかかわらず, 修復効率において既存の技術よりも優れていたことを明らかにした。
論文 参考訳(メタデータ) (2024-04-17T03:46:38Z) - A Novel Approach for Automatic Program Repair using Round-Trip
Translation with Large Language Models [50.86686630756207]
研究によると、ある文の文法的誤りは、それを他の言語に翻訳し、その語を返せば修正できる。
現在の自動プログラム修復(APR)生成モデルは、ソースコードで事前訓練され、修正のために微調整されている。
本稿では,あるプログラミング言語から別のプログラミング言語,あるいは自然言語へのコード変換,そして,その逆といった,微調整ステップをバイパスし,ラウンド・トリップ変換(RTT)を用いる手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T22:36:31Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
大規模言語モデル(LLM)は、幅広いNLPタスクで顕著な性能を示した。
これらの欠陥を正すための有望なアプローチは自己補正であり、LLM自体が自身の出力で問題を修正するために誘導される。
本稿では,この新技術について概観する。
論文 参考訳(メタデータ) (2023-08-06T18:38:52Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssueは、現実的なバグローカライゼーションのためのベンチマークである。
実際のJavaバグと合成Javaバグの多様性を備えた一般的なベンチマークを提供する。
われわれは,バグローカライゼーションの最先端技術として,APRの性能向上と,現代の開発サイクルへの適用性の向上を期待している。
論文 参考訳(メタデータ) (2022-07-21T20:17:53Z) - Adversarial Patch Generation for Automated Program Repair [0.0]
NEVERMOREは、バグと修正の敵対的な性質にインスパイアされた、新しい学習ベースのメカニズムである。
NEVERMOREはGenerative Adrial Networksアーキテクチャに基づいて構築されており、人為的な修正を忠実に模倣する修正を生成するために、歴史的なバグ修正を訓練している。
実世界の500のバグに対する実証的な評価は、NEVERMOREがバグ修正に有効であることを示し、調査対象のバグの21.2%が人間の修正にマッチする修復を生成する。
論文 参考訳(メタデータ) (2020-12-21T00:34:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。