論文の概要: A Comprehensive Survey of AI-Driven Advancements and Techniques in Automated Program Repair and Code Generation
- arxiv url: http://arxiv.org/abs/2411.07586v1
- Date: Tue, 12 Nov 2024 06:47:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:21:37.193727
- Title: A Comprehensive Survey of AI-Driven Advancements and Techniques in Automated Program Repair and Code Generation
- Title(参考訳): プログラムの自動修復とコード生成におけるAI駆動の進歩と技術に関する包括的調査
- Authors: Avinash Anand, Akshit Gupta, Nishchay Yadav, Shaurya Bajaj,
- Abstract要約: 最近27の論文がレビューされ、2つのグループに分けられた。
最初のグループは、意味的エラーの特定を含む、バグの検出と修復のための新しいメソッドで構成されている。
2つ目のグループはコード生成に精通しており、プログラミングとタスク固有のモデルのために微調整された汎用LLMの概要を提供している。
また、識別子認識トレーニング、命令レベルでの微調整、セマンティックコード構造の導入など、コード生成を改善する方法も提示されている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Bug fixing and code generation have been core research topics in software development for many years. The recent explosive growth in Large Language Models has completely transformed these spaces, putting in reach incredibly powerful tools for both. In this survey, 27 recent papers have been reviewed and split into two groups: one dedicated to Automated Program Repair (APR) and LLM integration and the other to code generation using LLMs. The first group consists of new methods for bug detection and repair, which include locating semantic errors, security vulnerabilities, and runtime failure bugs. The place of LLMs in reducing manual debugging efforts is emphasized in this work by APR toward context-aware fixes, with innovations that boost accuracy and efficiency in automatic debugging. The second group dwells on code generation, providing an overview of both general-purpose LLMs fine-tuned for programming and task-specific models. It also presents methods to improve code generation, such as identifier-aware training, fine-tuning at the instruction level, and incorporating semantic code structures. This survey work contrasts the methodologies in APR and code generation to identify trends such as using LLMs, feedback loops to enable iterative code improvement and open-source models. It also discusses the challenges of achieving functional correctness and security and outlines future directions for research in LLM-based software development.
- Abstract(参考訳): バグ修正とコード生成は、長年にわたりソフトウェア開発における中核的な研究トピックである。
最近のLarge Language Modelsの爆発的な成長は、これらの空間を完全に変え、両者にとって非常に強力なツールに到達した。
この調査では、27の最近の論文がレビューされ、APR(Automated Program repair)とLLM統合のためのグループと、LLMを使ったコード生成のためのグループに分けられている。
最初のグループは、セマンティックエラー、セキュリティ脆弱性、実行時の障害バグの特定を含む、バグの検出と修正のための新しいメソッドで構成されている。
手動デバッグ作業の削減におけるLLMの位置づけは、自動デバッグの精度と効率を向上する革新とともに、APRによるコンテキスト対応の修正に向けた作業で強調されている。
2つ目のグループはコード生成に精通しており、プログラミングとタスク固有のモデルのために微調整された汎用LLMの概要を提供している。
また、識別子認識トレーニング、命令レベルでの微調整、セマンティックコード構造の導入など、コード生成を改善する方法も提示されている。
この調査は、APRとコード生成の方法論を対比して、LLM、フィードバックループを使用して反復的なコード改善とオープンソースモデルを可能にするようなトレンドを特定する。
また、機能的正当性とセキュリティを達成する上での課題についても論じ、LLMベースのソフトウェア開発における今後の研究の方向性について概説する。
関連論文リスト
- RGD: Multi-LLM Based Agent Debugger via Refinement and Generation Guidance [0.6062751776009752]
大規模言語モデル(LLM)は、コード生成タスクにおいて驚くべきポテンシャルを示しています。
LLMはタスク記述に基づいてコードを生成することができるが、精度は限られている。
コード生成と自動デバッグのためのLLMエージェントの新しいアーキテクチャ:Refinement and Guidancebug (RGD)を紹介する。
RGDはコード生成タスクを複数のステップに分割し、より明確なワークフローを確保し、自己回帰とフィードバックに基づいた反復的なコード改善を可能にする。
論文 参考訳(メタデータ) (2024-10-02T05:07:02Z) - No Man is an Island: Towards Fully Automatic Programming by Code Search, Code Generation and Program Repair [9.562123938545522]
ツールネームは、様々なコード検索、生成、修復ツールを統合することができ、これら3つの研究領域を初めて組み合わせることができる。
例えば、CodeLlamaは62.53%の改善で267のプログラミング問題を解決するのに役立ちます。
論文 参考訳(メタデータ) (2024-09-05T06:24:29Z) - An Empirical Study on Self-correcting Large Language Models for Data Science Code Generation [1.335664823620186]
大規模言語モデル(LLM)は最近、ソフトウェア工学のタスクに多くの応用を進歩させた。
CoT-SelfEvolveは、自己修正プロセスを通じて、反復的かつ自動的にコードを洗練する。
論文 参考訳(メタデータ) (2024-08-28T09:19:09Z) - Revisiting Evolutionary Program Repair via Code Language Model [11.711739409758476]
本稿では,多目的進化アルゴリズムをCLMと統合し,Javaプロジェクトのマルチロケーションバグを修正するARJA-CLMを提案する。
また,提案手法は,CLMが候補文を生成するための,アクセス可能なフィールドとメソッドに関する追加情報により,プロンプトを充実させる。
論文 参考訳(メタデータ) (2024-08-20T01:57:45Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
大規模言語モデル(LLM)は、コード生成において大きな進歩を遂げていますが、既存の研究は、ソフトウェア開発の動的な性質を説明できません。
バージョン別コード補完(VSCC)とバージョン別コードマイグレーション(VACM)の2つの新しいタスクを提案する。
VersiCodeについて広範な評価を行い、バージョン管理可能なコード生成が確かに重要な課題であることを示した。
論文 参考訳(メタデータ) (2024-06-11T16:15:06Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - Neuron Patching: Semantic-based Neuron-level Language Model Repair for Code Generation [32.178931149612644]
大規模言語モデル(LLM)はすでにソフトウェア工学、特にコード生成タスクで広く採用されている。
コーディングタスクにおけるLLMの修復のための新しい効果的なモデル編集手法であるtextscMENTを提案する。
TextscMENTは、1つまたは2つのニューロンにパッチを当てることで神経モデルを修正することができる、効果的で効率的で信頼性の高いものだ。
論文 参考訳(メタデータ) (2023-12-08T20:28:08Z) - CodeChain: Towards Modular Code Generation Through Chain of Self-revisions with Representative Sub-modules [51.82044734879657]
我々は,自己修正の連鎖を通じてモジュール化されたコード生成を誘発する,新しい推論フレームワークであるCodeChainを提案する。
CodeChainは、生成したソリューションのモジュール性と正確性の両方を大幅に向上させ、APPSで35%、CodeContestsで76%の相対パス@1の改善を実現しています。
論文 参考訳(メタデータ) (2023-10-13T10:17:48Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
CodeRLは、事前訓練されたLMと深層強化学習によるプログラム合成タスクのための新しいフレームワークである。
推論中、我々は重要なサンプリング戦略を持つ新しい生成手順を導入する。
モデルバックボーンについては,CodeT5のエンコーダデコーダアーキテクチャを拡張し,学習目標を拡張した。
論文 参考訳(メタデータ) (2022-07-05T02:42:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。