Deep Dependency Networks and Advanced Inference Schemes for Multi-Label Classification
- URL: http://arxiv.org/abs/2404.11667v1
- Date: Wed, 17 Apr 2024 18:04:37 GMT
- Title: Deep Dependency Networks and Advanced Inference Schemes for Multi-Label Classification
- Authors: Shivvrat Arya, Yu Xiang, Vibhav Gogate,
- Abstract summary: We present a unified framework called deep dependency networks (DDNs)
DDNs combine dependency networks and deep learning architectures for multi-label classification.
A drawback of DDNs compared to Markov networks is their lack of advanced inference schemes.
- Score: 7.643377057724898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a unified framework called deep dependency networks (DDNs) that combines dependency networks and deep learning architectures for multi-label classification, with a particular emphasis on image and video data. The primary advantage of dependency networks is their ease of training, in contrast to other probabilistic graphical models like Markov networks. In particular, when combined with deep learning architectures, they provide an intuitive, easy-to-use loss function for multi-label classification. A drawback of DDNs compared to Markov networks is their lack of advanced inference schemes, necessitating the use of Gibbs sampling. To address this challenge, we propose novel inference schemes based on local search and integer linear programming for computing the most likely assignment to the labels given observations. We evaluate our novel methods on three video datasets (Charades, TACoS, Wetlab) and three image datasets (MS-COCO, PASCAL VOC, NUS-WIDE), comparing their performance with (a) basic neural architectures and (b) neural architectures combined with Markov networks equipped with advanced inference and learning techniques. Our results demonstrate the superiority of our new DDN methods over the two competing approaches.
Related papers
- Structure-Aware Consensus Network on Graphs with Few Labeled Nodes [7.438140196173472]
Graph node classification with few labeled nodes presents significant challenges due to limited supervision.
Conventional methods often exploit the graph in a transductive learning manner.
We introduce a Structure-Aware Consensus Network (SACN) to overcome these issues.
arXiv Detail & Related papers (2024-07-02T11:46:07Z) - Unsupervised Graph Attention Autoencoder for Attributed Networks using
K-means Loss [0.0]
We introduce a simple, efficient, and clustering-oriented model based on unsupervised textbfGraph Attention textbfAutotextbfEncoder for community detection in attributed networks.
The proposed model adeptly learns representations from both the network's topology and attribute information, simultaneously addressing dual objectives: reconstruction and community discovery.
arXiv Detail & Related papers (2023-11-21T20:45:55Z) - Two-level Graph Network for Few-Shot Class-Incremental Learning [7.815043173207539]
Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points.
Existing FSCIL methods ignore the semantic relationships between sample-level and class-level.
In this paper, we designed a two-level graph network for FSCIL named Sample-level and Class-level Graph Neural Network (SCGN)
arXiv Detail & Related papers (2023-03-24T08:58:08Z) - Deep Dependency Networks for Multi-Label Classification [24.24496964886951]
We show that the performance of previous approaches that combine Markov Random Fields with neural networks can be modestly improved.
We propose a new modeling framework called deep dependency networks, which augments a dependency network.
Despite its simplicity, jointly learning this new architecture yields significant improvements in performance.
arXiv Detail & Related papers (2023-02-01T17:52:40Z) - Deep Image Clustering with Contrastive Learning and Multi-scale Graph
Convolutional Networks [58.868899595936476]
This paper presents a new deep clustering approach termed image clustering with contrastive learning and multi-scale graph convolutional networks (IcicleGCN)
Experiments on multiple image datasets demonstrate the superior clustering performance of IcicleGCN over the state-of-the-art.
arXiv Detail & Related papers (2022-07-14T19:16:56Z) - Knowledge Distillation By Sparse Representation Matching [107.87219371697063]
We propose Sparse Representation Matching (SRM) to transfer intermediate knowledge from one Convolutional Network (CNN) to another by utilizing sparse representation.
We formulate as a neural processing block, which can be efficiently optimized using gradient descent and integrated into any CNN in a plug-and-play manner.
Our experiments demonstrate that is robust to architectural differences between the teacher and student networks, and outperforms other KD techniques across several datasets.
arXiv Detail & Related papers (2021-03-31T11:47:47Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
Graph Convolutional Networks are among the most promising approaches for capturing relationships among structured data points.
We propose three novel self-supervised auxiliary tasks to train graph-based neural network models in a multi-task fashion.
arXiv Detail & Related papers (2020-11-14T11:09:51Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
We introduce a novel neural network termed Relation-and-Margin learning Network (ReMarNet)
Our method assembles two networks of different backbones so as to learn the features that can perform excellently in both of the aforementioned two classification mechanisms.
Experiments on four image datasets demonstrate that our approach is effective in learning discriminative features from a small set of labeled samples.
arXiv Detail & Related papers (2020-06-27T13:50:20Z) - ResNeSt: Split-Attention Networks [86.25490825631763]
We present a modularized architecture, which applies the channel-wise attention on different network branches to leverage their success in capturing cross-feature interactions and learning diverse representations.
Our model, named ResNeSt, outperforms EfficientNet in accuracy and latency trade-off on image classification.
arXiv Detail & Related papers (2020-04-19T20:40:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.