論文の概要: Factorized Motion Fields for Fast Sparse Input Dynamic View Synthesis
- arxiv url: http://arxiv.org/abs/2404.11669v1
- Date: Wed, 17 Apr 2024 18:08:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 13:40:17.460923
- Title: Factorized Motion Fields for Fast Sparse Input Dynamic View Synthesis
- Title(参考訳): 高速スパース入力動的ビュー合成のための分解運動場
- Authors: Nagabhushan Somraj, Kapil Choudhary, Sai Harsha Mupparaju, Rajiv Soundararajan,
- Abstract要約: 疎入力視点で動的放射場を高速に表現することに集中する。
既存の高速ダイナミックシーンモデルは、運動を明示的にモデル化しない。
我々は、カメラ間のスパースフロー先行と、カメラ内の密流先行とを組み合わせて、我々の動きモデルを調整することを含む、信頼性の高いフロー先行を導入する。
- 参考スコア(独自算出の注目度): 5.699788926464751
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing a 3D representation of a dynamic scene for fast optimization and rendering is a challenging task. While recent explicit representations enable fast learning and rendering of dynamic radiance fields, they require a dense set of input viewpoints. In this work, we focus on learning a fast representation for dynamic radiance fields with sparse input viewpoints. However, the optimization with sparse input is under-constrained and necessitates the use of motion priors to constrain the learning. Existing fast dynamic scene models do not explicitly model the motion, making them difficult to be constrained with motion priors. We design an explicit motion model as a factorized 4D representation that is fast and can exploit the spatio-temporal correlation of the motion field. We then introduce reliable flow priors including a combination of sparse flow priors across cameras and dense flow priors within cameras to regularize our motion model. Our model is fast, compact and achieves very good performance on popular multi-view dynamic scene datasets with sparse input viewpoints. The source code for our model can be found on our project page: https://nagabhushansn95.github.io/publications/2024/RF-DeRF.html.
- Abstract(参考訳): 高速な最適化とレンダリングのために動的シーンの3D表現を設計することは難しい作業である。
最近の明示的な表現は動的放射場を高速に学習しレンダリングすることを可能にするが、それらには深い入力視点が必要である。
本研究では,スパースな入力視点を持つ動的放射場に対する高速な表現の学習に焦点をあてる。
しかし、スパース入力による最適化は非制約であり、学習を制約するためには、前もって動きを使う必要がある。
既存の高速ダイナミックシーンモデルでは、動きを明示的にモデル化することはなく、動きの先行に制約されるのが困難である。
運動場の時空間相関を生かし,高速な因子化4次元表現として明示的な動きモデルを設計する。
次に、カメラ間のスパースフロー前処理と、カメラ内の密流前処理を組み合わせることで、動作モデルを調整することを含む、信頼性の高いフロー前処理を導入する。
我々のモデルは高速でコンパクトであり、スパースな入力視点を持つ人気のあるマルチビュー動的シーンデータセット上で非常に優れた性能を実現している。
私たちのモデルのソースコードは、プロジェクトページにある。 https://nagabhushansn95.github.io/publications/2024/RF-DeRF.html。
関連論文リスト
- MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
我々は動的シーンから時間ステップごとの幾何を直接推定する新しい幾何学的アプローチであるMotion DUSt3R(MonST3R)を提案する。
各タイムステップのポイントマップを単純に推定することで、静的シーンにのみ使用されるDUST3Rの表現を動的シーンに効果的に適応させることができる。
我々は、問題を微調整タスクとしてポーズし、いくつかの適切なデータセットを特定し、この制限されたデータ上でモデルを戦略的に訓練することで、驚くほどモデルを動的に扱えることを示す。
論文 参考訳(メタデータ) (2024-10-04T18:00:07Z) - Let Occ Flow: Self-Supervised 3D Occupancy Flow Prediction [14.866463843514156]
Occ Flowは、カメラ入力のみを使用して、関節の3D占有率と占有率の予測を行う最初の自己教師型作業である。
我々のアプローチは、動的オブジェクトの依存関係をキャプチャするために、新しい注意に基づく時間融合モジュールを組み込んでいる。
本手法は3次元容積流れ場に微分可能レンダリングを拡張する。
論文 参考訳(メタデータ) (2024-07-10T12:20:11Z) - DynMF: Neural Motion Factorization for Real-time Dynamic View Synthesis
with 3D Gaussian Splatting [35.69069478773709]
動的シーンの点当たりの運動は、明示的あるいは学習的な軌跡の小さなセットに分解することができると論じる。
我々の表現は解釈可能であり、効率的であり、複雑な動的シーンの動きのリアルタイムなビュー合成を提供するのに十分な表現力を持っている。
論文 参考訳(メタデータ) (2023-11-30T18:59:11Z) - EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via
Self-Supervision [85.17951804790515]
EmerNeRFは動的駆動シーンの時空間表現を学習するためのシンプルだが強力なアプローチである。
シーンの幾何学、外観、動き、セマンティクスを自己ブートストラップで同時にキャプチャする。
本手法はセンサシミュレーションにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2023-11-03T17:59:55Z) - Forward Flow for Novel View Synthesis of Dynamic Scenes [97.97012116793964]
本稿では,前向きワープを用いた動的シーンの新たなビュー合成のためのニューラルラジアンス場(NeRF)アプローチを提案する。
本手法は、新しいビューレンダリングとモーションモデリングの両方において、既存の手法よりも優れている。
論文 参考訳(メタデータ) (2023-09-29T16:51:06Z) - Neural Deformable Voxel Grid for Fast Optimization of Dynamic View
Synthesis [63.25919018001152]
動的シーンを扱うための高速な変形可能な放射場法を提案する。
本手法は訓練に20分しかかからないD-NeRFに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2022-06-15T17:49:08Z) - DeVRF: Fast Deformable Voxel Radiance Fields for Dynamic Scenes [27.37830742693236]
本稿では,動的放射場を高速に学習するための新しい表現であるDeVRFを提案する。
実験により、DeVRFはオンパー高忠実度の結果で2桁のスピードアップを達成することが示された。
論文 参考訳(メタデータ) (2022-05-31T12:13:54Z) - Learning Dynamic View Synthesis With Few RGBD Cameras [60.36357774688289]
本稿では,RGBDカメラを用いて動的屋内シーンのフリー視点映像を合成することを提案する。
我々は、RGBDフレームから点雲を生成し、それをニューラル機能を介して、自由視点ビデオにレンダリングする。
そこで本研究では,未完成の深度を適応的に塗布して新規なビューを描画する,シンプルなRegional Depth-Inpaintingモジュールを提案する。
論文 参考訳(メタデータ) (2022-04-22T03:17:35Z) - MoCo-Flow: Neural Motion Consensus Flow for Dynamic Humans in Stationary
Monocular Cameras [98.40768911788854]
4次元連続時間変動関数を用いて動的シーンをモデル化する表現であるMoCo-Flowを紹介する。
私たちの研究の中心には、運動フロー上の運動コンセンサス正規化によって制約される、新しい最適化の定式化がある。
複雑度の異なる人間の動きを含む複数のデータセット上でMoCo-Flowを広範囲に評価した。
論文 参考訳(メタデータ) (2021-06-08T16:03:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。