End-to-End Mesh Optimization of a Hybrid Deep Learning Black-Box PDE Solver
- URL: http://arxiv.org/abs/2404.11766v2
- Date: Sun, 28 Apr 2024 16:01:21 GMT
- Title: End-to-End Mesh Optimization of a Hybrid Deep Learning Black-Box PDE Solver
- Authors: Shaocong Ma, James Diffenderfer, Bhavya Kailkhura, Yi Zhou,
- Abstract summary: Recent research proposed a PDE correction framework that leverages deep learning to correct the solution obtained by a PDE solver on a coarse mesh.
End-to-end training of such a PDE correction model requires the PDE solver to support automatic differentiation through the iterative numerical process.
In this study, we explore the feasibility of end-to-end training of a hybrid model with a black-box PDE solver and a deep learning model for fluid flow prediction.
- Score: 24.437884270729903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has been widely applied to solve partial differential equations (PDEs) in computational fluid dynamics. Recent research proposed a PDE correction framework that leverages deep learning to correct the solution obtained by a PDE solver on a coarse mesh. However, end-to-end training of such a PDE correction model over both solver-dependent parameters such as mesh parameters and neural network parameters requires the PDE solver to support automatic differentiation through the iterative numerical process. Such a feature is not readily available in many existing solvers. In this study, we explore the feasibility of end-to-end training of a hybrid model with a black-box PDE solver and a deep learning model for fluid flow prediction. Specifically, we investigate a hybrid model that integrates a black-box PDE solver into a differentiable deep graph neural network. To train this model, we use a zeroth-order gradient estimator to differentiate the PDE solver via forward propagation. Although experiments show that the proposed approach based on zeroth-order gradient estimation underperforms the baseline that computes exact derivatives using automatic differentiation, our proposed method outperforms the baseline trained with a frozen input mesh to the solver. Moreover, with a simple warm-start on the neural network parameters, we show that models trained by these zeroth-order algorithms achieve an accelerated convergence and improved generalization performance.
Related papers
- A Natural Primal-Dual Hybrid Gradient Method for Adversarial Neural Network Training on Solving Partial Differential Equations [9.588717577573684]
We propose a scalable preconditioned primal hybrid gradient algorithm for solving partial differential equations (PDEs)
We compare the performance of the proposed method with several commonly used deep learning algorithms.
The numerical results suggest that the proposed method performs efficiently and robustly and converges more stably.
arXiv Detail & Related papers (2024-11-09T20:39:10Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
We present the Universal PDE solver (Unisolver) capable of solving a wide scope of PDEs.
Our key finding is that a PDE solution is fundamentally under the control of a series of PDE components.
Unisolver achieves consistent state-of-the-art results on three challenging large-scale benchmarks.
arXiv Detail & Related papers (2024-05-27T15:34:35Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
We study the benefits of weight-tied neural network architectures for steady-state PDEs.
We propose FNO-DEQ, a deep equilibrium variant of the FNO architecture that directly solves for the solution of a steady-state PDE.
arXiv Detail & Related papers (2023-11-30T22:34:57Z) - Multilevel CNNs for Parametric PDEs [0.0]
We combine concepts from multilevel solvers for partial differential equations with neural network based deep learning.
An in-depth theoretical analysis shows that the proposed architecture is able to approximate multigrid V-cycles to arbitrary precision.
We find substantial improvements over state-of-the-art deep learning-based solvers.
arXiv Detail & Related papers (2023-04-01T21:11:05Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
Filtering equations play a central role in many real-life applications, including numerical weather prediction, finance and engineering.
One of the classical approaches to approximate the solution of the filtering equations is to use a PDE inspired method, called the splitting-up method.
We combine this method with a neural network representation to produce an approximation of the unnormalised conditional distribution of the signal process.
arXiv Detail & Related papers (2022-01-10T11:01:36Z) - PDE-constrained Models with Neural Network Terms: Optimization and
Global Convergence [0.0]
Recent research has used deep learning to develop partial differential equation (PDE) models in science and engineering.
We rigorously study the optimization of a class of linear elliptic PDEs with neural network terms.
We train a neural network model for an application in fluid mechanics, in which the neural network functions as a closure model for the Reynolds-averaged Navier-Stokes equations.
arXiv Detail & Related papers (2021-05-18T16:04:33Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - Solver-in-the-Loop: Learning from Differentiable Physics to Interact
with Iterative PDE-Solvers [26.444103444634994]
We show that machine learning can improve the solution accuracy by correcting for effects not captured by the discretized PDE.
We find that previously used learning approaches are significantly outperformed by methods that integrate the solver into the training loop.
This provides the model with realistic input distributions that take previous corrections into account.
arXiv Detail & Related papers (2020-06-30T18:00:03Z) - DiscretizationNet: A Machine-Learning based solver for Navier-Stokes
Equations using Finite Volume Discretization [0.7366405857677226]
The goal of this work is to develop an ML-based PDE solver, that couples important characteristics of existing PDE solvers with Machine Learning technologies.
Our ML-solver, DiscretizationNet, employs a generative CNN-based encoder-decoder model with PDE variables as both input and output features.
A novel iterative capability is implemented during the network training to improve the stability and convergence of the ML-solver.
arXiv Detail & Related papers (2020-05-17T19:54:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.