論文の概要: OPTiML: Dense Semantic Invariance Using Optimal Transport for Self-Supervised Medical Image Representation
- arxiv url: http://arxiv.org/abs/2404.11868v2
- Date: Wed, 24 Apr 2024 06:05:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-04-25 16:05:24.557740
- Title: OPTiML: Dense Semantic Invariance Using Optimal Transport for Self-Supervised Medical Image Representation
- Title(参考訳): OPTiML: 自己監督型医用画像表現のための最適輸送を用いた高密度セマンティック不変性
- Authors: Azad Singh, Vandan Gorade, Deepak Mishra,
- Abstract要約: 自己教師付き学習(SSL)は、アノテーションなしで学習できることから、医用画像解析の有望な技術として登場した。
本稿では, 最適トランスポート(OT)を用いたSSLフレームワークOPTiMLを導入し, 密接なセマンティック不変性と細粒度の詳細を捉える。
実験の結果,OPTiMLはすべての評価課題において最先端の手法よりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 6.4136876268620115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised learning (SSL) has emerged as a promising technique for medical image analysis due to its ability to learn without annotations. However, despite the promising potential, conventional SSL methods encounter limitations, including challenges in achieving semantic alignment and capturing subtle details. This leads to suboptimal representations, which fail to accurately capture the underlying anatomical structures and pathological details. In response to these constraints, we introduce a novel SSL framework OPTiML, employing optimal transport (OT), to capture the dense semantic invariance and fine-grained details, thereby enhancing the overall effectiveness of SSL in medical image representation learning. The core idea is to integrate OT with a cross-viewpoint semantics infusion module (CV-SIM), which effectively captures complex, fine-grained details inherent in medical images across different viewpoints. In addition to the CV-SIM module, OPTiML imposes the variance and covariance regularizations within OT framework to force the model focus on clinically relevant information while discarding less informative features. Through these, the proposed framework demonstrates its capacity to learn semantically rich representations that can be applied to various medical imaging tasks. To validate its effectiveness, we conduct experimental studies on three publicly available datasets from chest X-ray modality. Our empirical results reveal OPTiML's superiority over state-of-the-art methods across all evaluated tasks.
- Abstract(参考訳): 自己教師付き学習(SSL)は、アノテーションなしで学習できることから、医用画像解析の有望な技術として登場した。
しかし、有望な可能性にもかかわらず、従来のSSLメソッドでは、セマンティックアライメントの達成や微妙な詳細の取得など、制限に直面している。
これは、解剖学的構造や病理的詳細を正確に把握できない、最適下界表現につながる。
これらの制約に対応するため,医用画像表現学習におけるSSLの全体的な効果を高めるために,最適なトランスポート(OT)を用いた新しいSSLフレームワークOPTiMLを導入する。
中心となる考え方は、OTとクロスビューポイントセマンティクス・インフュージョン・モジュール(CV-SIM)を統合することである。
CV-SIMモジュールに加えて、OPTiMLはOTフレームワーク内での分散と共分散の規則化を強制し、臨床的に関係のある情報に焦点を絞ると同時に、より少ない情報的特徴を破棄する。
提案するフレームワークは,様々な医用画像タスクに適用可能な意味豊かな表現を学習する能力を示す。
その有効性を検証するために,胸部X線モダリティから利用可能な3つのデータセットについて実験を行った。
実験の結果,OPTiMLはすべての評価課題において,最先端の手法よりも優れていることがわかった。
関連論文リスト
- Leveraging Vision-Language Embeddings for Zero-Shot Learning in Histopathology Images [7.048241543461529]
ゼロショット組織像分類におけるこれらの課題に対処するため, MR-PHE(Multi-Resolution Prompt-Guided Hybrid Embedding)と呼ばれる新しいフレームワークを提案する。
我々は,グローバルな画像埋め込みと重み付けされたパッチ埋め込みを統合したハイブリッドな埋め込み戦略を導入する。
類似性に基づくパッチ重み付け機構は、クラス埋め込みとの関連性に基づいて、アテンションのような重み付けをパッチに割り当てる。
論文 参考訳(メタデータ) (2025-03-13T12:18:37Z) - Mitigating Hallucinations of Large Language Models in Medical Information Extraction via Contrastive Decoding [92.32881381717594]
医療情報抽出タスクにおける幻覚の問題を解決するために,ALCD(ALternate Contrastive Decoding)を導入する。
ALCDは, 従来の復号法に比べて幻覚の解消に有意な改善が見られた。
論文 参考訳(メタデータ) (2024-10-21T07:19:19Z) - CoBooM: Codebook Guided Bootstrapping for Medical Image Representation Learning [6.838695126692698]
自己教師付き学習は、注釈のないデータを活用することで医療画像分析のための有望なパラダイムとして浮上してきた。
既存のSSLアプローチは、医療画像に固有の高い解剖学的類似性を見落としている。
連続的および離散的な表現を統合することで、自己監督型医用画像学習のための新しいフレームワークであるCoBooMを提案する。
論文 参考訳(メタデータ) (2024-08-08T06:59:32Z) - MLVICX: Multi-Level Variance-Covariance Exploration for Chest X-ray Self-Supervised Representation Learning [6.4136876268620115]
MLVICXは、胸部X線画像からの埋め込みの形でリッチな表現をキャプチャするアプローチである。
自己教師付き胸部X線表現学習におけるMLVICXの性能を示す。
論文 参考訳(メタデータ) (2024-03-18T06:19:37Z) - Overcoming Dimensional Collapse in Self-supervised Contrastive Learning
for Medical Image Segmentation [2.6764957223405657]
医用画像解析分野へのコントラスト学習の適用について検討する。
以上の結果から,最先端のコントラスト学習手法であるMoCo v2は,医用画像に適用すると次元的崩壊に遭遇することが明らかとなった。
これを解決するために,局所的な特徴学習と特徴デコレーションという2つの重要な貢献を提案する。
論文 参考訳(メタデータ) (2024-02-22T15:02:13Z) - MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
本稿では、画像テキストのコントラスト学習を通じて、言語情報を視覚領域に統合するための案内信号として、ドメイン固有の医療知識を活用する新しいフレームワークを提案する。
我々のモデルには、設計した分散エンコーダによるグローバルコントラスト学習、局所トークン・知識・パッチアライメントコントラスト学習、知識誘導型カテゴリレベルのコントラスト学習、エキスパートナレッジによるコントラスト学習が含まれる。
特に、MLIPは、限られた注釈付きデータであっても最先端の手法を超越し、医療表現学習の進歩におけるマルチモーダル事前学習の可能性を強調している。
論文 参考訳(メタデータ) (2024-02-03T05:48:50Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
結核(TB)は世界的な健康上の脅威であり、毎年何百万人もの死者を出している。
深層学習を用いたコンピュータ支援結核診断 (CTD) は有望であるが, 限られたトレーニングデータによって進行が妨げられている。
結核X線(TBX11K)データセットは11,200個の胸部X線(CXR)画像とそれに対応するTB領域のバウンディングボックスアノテーションを含む。
このデータセットは、高品質なCTDのための洗練された検出器のトレーニングを可能にする。
論文 参考訳(メタデータ) (2023-07-06T08:27:48Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Anatomical Invariance Modeling and Semantic Alignment for
Self-supervised Learning in 3D Medical Image Analysis [6.87667643104543]
自己教師付き学習(SSL)は、最近、3D医療画像解析タスクで有望なパフォーマンスを達成した。
現在のほとんどの手法は、元々写真や自然画像用に設計された既存のSSLパラダイムに従っている。
我々は,解剖的不変性モデリングと意味的アライメントを明確に満たす,自己教師付き学習フレームワークAliceを提案する。
論文 参考訳(メタデータ) (2023-02-11T06:36:20Z) - PCRLv2: A Unified Visual Information Preservation Framework for
Self-supervised Pre-training in Medical Image Analysis [56.63327669853693]
本稿では,ピクセルレベルの情報を高レベルなセマンティクスに明示的にエンコードするための画素復元タスクを提案する。
また,画像理解を支援する強力なツールであるスケール情報の保存についても検討する。
提案されている統合SSLフレームワークは、さまざまなタスクで自己管理されたフレームワークを超越している。
論文 参考訳(メタデータ) (2023-01-02T17:47:27Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Cross-level Contrastive Learning and Consistency Constraint for
Semi-supervised Medical Image Segmentation [46.678279106837294]
半教師型医用画像セグメンテーションにおける局所特徴の表現能力を高めるためのクロスレベルコンストラシティブ学習手法を提案する。
クロスレベルなコントラスト学習と一貫性制約の助けを借りて、非ラベル付きデータを効果的に探索してセグメンテーション性能を向上させることができる。
論文 参考訳(メタデータ) (2022-02-08T15:12:11Z) - Organ localisation using supervised and semi supervised approaches
combining reinforcement learning with imitation learning [6.198237241838559]
コンピュータ支援診断は、しばしば放射線検査における関心領域の分析を必要とする。
ディープラーニングアルゴリズムは、大量の注釈付きデータの可用性に依存している。
この制限に対処する必要性から、複数の臓器の局在化と検出へのアプローチが提示される。
論文 参考訳(メタデータ) (2021-12-06T14:04:38Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets [55.06983249986729]
我々は、トレーニングデータと同じデータセットでテストすると、ディープラーニングモデルが、異なるソースからデータセットでテストされると、パフォーマンスが低下し始めることを示す。
対戦型トレーニング戦略を用いることで、ネットワークはソース不変表現を学習せざるを得ないことを示す。
論文 参考訳(メタデータ) (2020-08-04T07:41:15Z) - BS-Net: learning COVID-19 pneumonia severity on a large Chest X-Ray
dataset [6.5800499500032705]
我々は、Chest X-rays画像(CXR)に基づいて、新型コロナウイルス患者の肺妥協の度合いを判定するエンド・ツー・エンドのディープラーニングアーキテクチャを設計する。
当院で収集した約5,000個のCXR注釈画像の臨床的データセットを利用して検討した。
私たちのソリューションは、評価精度と一貫性において、一人のアノテータよりも優れています。
論文 参考訳(メタデータ) (2020-06-08T13:55:58Z) - Localization of Critical Findings in Chest X-Ray without Local
Annotations Using Multi-Instance Learning [0.0]
ディープラーニングモデルは説明責任の欠如に苦しむことが多い。
ディープラーニングモデルは、ピクセルレベルラベルやバウンディングボックス座標のような、局所的なアノテートされたトレーニングデータを必要とする。
本研究では,マルチインスタンス学習に基づく解釈可能なDLアルゴリズムを用いて,これらの欠点に対処する。
論文 参考訳(メタデータ) (2020-01-23T21:29:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。