論文の概要: OPTiML: Dense Semantic Invariance Using Optimal Transport for Self-Supervised Medical Image Representation
- arxiv url: http://arxiv.org/abs/2404.11868v3
- Date: Sun, 12 May 2024 03:15:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 23:10:20.365193
- Title: OPTiML: Dense Semantic Invariance Using Optimal Transport for Self-Supervised Medical Image Representation
- Title(参考訳): OPTiML: 自己監督型医用画像表現のための最適輸送を用いた高密度セマンティック不変性
- Authors: Azad Singh, Vandan Gorade, Deepak Mishra,
- Abstract要約: 自己教師付き学習(SSL)は、アノテーションなしで学習できることから、医用画像解析の有望な技術として登場した。
本稿では, 最適トランスポート(OT)を用いたSSLフレームワークOPTiMLを導入し, 密接なセマンティック不変性と細粒度の詳細を捉える。
実験の結果,OPTiMLはすべての評価課題において最先端の手法よりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 6.4136876268620115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised learning (SSL) has emerged as a promising technique for medical image analysis due to its ability to learn without annotations. However, despite the promising potential, conventional SSL methods encounter limitations, including challenges in achieving semantic alignment and capturing subtle details. This leads to suboptimal representations, which fail to accurately capture the underlying anatomical structures and pathological details. In response to these constraints, we introduce a novel SSL framework OPTiML, employing optimal transport (OT), to capture the dense semantic invariance and fine-grained details, thereby enhancing the overall effectiveness of SSL in medical image representation learning. The core idea is to integrate OT with a cross-viewpoint semantics infusion module (CV-SIM), which effectively captures complex, fine-grained details inherent in medical images across different viewpoints. In addition to the CV-SIM module, OPTiML imposes the variance and covariance regularizations within OT framework to force the model focus on clinically relevant information while discarding less informative features. Through these, the proposed framework demonstrates its capacity to learn semantically rich representations that can be applied to various medical imaging tasks. To validate its effectiveness, we conduct experimental studies on three publicly available datasets from chest X-ray modality. Our empirical results reveal OPTiML's superiority over state-of-the-art methods across all evaluated tasks.
- Abstract(参考訳): 自己教師付き学習(SSL)は、アノテーションなしで学習できることから、医用画像解析の有望な技術として登場した。
しかし、有望な可能性にもかかわらず、従来のSSLメソッドでは、セマンティックアライメントの達成や微妙な詳細の取得など、制限に直面している。
これは、解剖学的構造や病理的詳細を正確に把握できない、最適下界表現につながる。
これらの制約に対応するため,医用画像表現学習におけるSSLの全体的な効果を高めるために,最適なトランスポート(OT)を用いた新しいSSLフレームワークOPTiMLを導入する。
中心となる考え方は、OTとクロスビューポイントセマンティクス・インフュージョン・モジュール(CV-SIM)を統合することである。
CV-SIMモジュールに加えて、OPTiMLはOTフレームワーク内での分散と共分散の規則化を強制し、臨床的に関係のある情報に焦点を絞ると同時に、より少ない情報的特徴を破棄する。
提案するフレームワークは,様々な医用画像タスクに適用可能な意味豊かな表現を学習する能力を示す。
その有効性を検証するために,胸部X線モダリティから利用可能な3つのデータセットについて実験を行った。
実験の結果,OPTiMLはすべての評価課題において,最先端の手法よりも優れていることがわかった。
関連論文リスト
- Mitigating Hallucinations of Large Language Models in Medical Information Extraction via Contrastive Decoding [92.32881381717594]
医療情報抽出タスクにおける幻覚の問題を解決するために,ALCD(ALternate Contrastive Decoding)を導入する。
ALCDは, 従来の復号法に比べて幻覚の解消に有意な改善が見られた。
論文 参考訳(メタデータ) (2024-10-21T07:19:19Z) - CoBooM: Codebook Guided Bootstrapping for Medical Image Representation Learning [6.838695126692698]
自己教師付き学習は、注釈のないデータを活用することで医療画像分析のための有望なパラダイムとして浮上してきた。
既存のSSLアプローチは、医療画像に固有の高い解剖学的類似性を見落としている。
連続的および離散的な表現を統合することで、自己監督型医用画像学習のための新しいフレームワークであるCoBooMを提案する。
論文 参考訳(メタデータ) (2024-08-08T06:59:32Z) - Overcoming Dimensional Collapse in Self-supervised Contrastive Learning
for Medical Image Segmentation [2.6764957223405657]
医用画像解析分野へのコントラスト学習の適用について検討する。
以上の結果から,最先端のコントラスト学習手法であるMoCo v2は,医用画像に適用すると次元的崩壊に遭遇することが明らかとなった。
これを解決するために,局所的な特徴学習と特徴デコレーションという2つの重要な貢献を提案する。
論文 参考訳(メタデータ) (2024-02-22T15:02:13Z) - MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
本稿では、画像テキストのコントラスト学習を通じて、言語情報を視覚領域に統合するための案内信号として、ドメイン固有の医療知識を活用する新しいフレームワークを提案する。
我々のモデルには、設計した分散エンコーダによるグローバルコントラスト学習、局所トークン・知識・パッチアライメントコントラスト学習、知識誘導型カテゴリレベルのコントラスト学習、エキスパートナレッジによるコントラスト学習が含まれる。
特に、MLIPは、限られた注釈付きデータであっても最先端の手法を超越し、医療表現学習の進歩におけるマルチモーダル事前学習の可能性を強調している。
論文 参考訳(メタデータ) (2024-02-03T05:48:50Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Anatomical Invariance Modeling and Semantic Alignment for
Self-supervised Learning in 3D Medical Image Analysis [6.87667643104543]
自己教師付き学習(SSL)は、最近、3D医療画像解析タスクで有望なパフォーマンスを達成した。
現在のほとんどの手法は、元々写真や自然画像用に設計された既存のSSLパラダイムに従っている。
我々は,解剖的不変性モデリングと意味的アライメントを明確に満たす,自己教師付き学習フレームワークAliceを提案する。
論文 参考訳(メタデータ) (2023-02-11T06:36:20Z) - PCRLv2: A Unified Visual Information Preservation Framework for
Self-supervised Pre-training in Medical Image Analysis [56.63327669853693]
本稿では,ピクセルレベルの情報を高レベルなセマンティクスに明示的にエンコードするための画素復元タスクを提案する。
また,画像理解を支援する強力なツールであるスケール情報の保存についても検討する。
提案されている統合SSLフレームワークは、さまざまなタスクで自己管理されたフレームワークを超越している。
論文 参考訳(メタデータ) (2023-01-02T17:47:27Z) - Cross-level Contrastive Learning and Consistency Constraint for
Semi-supervised Medical Image Segmentation [46.678279106837294]
半教師型医用画像セグメンテーションにおける局所特徴の表現能力を高めるためのクロスレベルコンストラシティブ学習手法を提案する。
クロスレベルなコントラスト学習と一貫性制約の助けを借りて、非ラベル付きデータを効果的に探索してセグメンテーション性能を向上させることができる。
論文 参考訳(メタデータ) (2022-02-08T15:12:11Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。