論文の概要: The Emerging AI Divide in the United States
- arxiv url: http://arxiv.org/abs/2404.11988v1
- Date: Thu, 18 Apr 2024 08:33:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 19:31:17.717020
- Title: The Emerging AI Divide in the United States
- Title(参考訳): 米国における新興AI部門
- Authors: Madeleine I. G. Daepp, Scott Counts,
- Abstract要約: 本研究では,米国住民の新たな生成型AIツールChatGPTに関する知識の空間的差異を特徴づける。
西海岸州ではChatGPTを検索するユーザが最も多く、アパラチア州や湾岸州では検索率が継続的に低い。
生成的AI技術は斬新なものだが、初期の取り込みの違いは、デジタルの限界化の慣れ親しんだ道を辿っているように見える。
- 参考スコア(独自算出の注目度): 2.0359927301080116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The digital divide describes disparities in access to and usage of digital tooling between social and economic groups. Emerging generative artificial intelligence tools, which strongly affect productivity, could magnify the impact of these divides. However, the affordability, multi-modality, and multilingual capabilities of these tools could also make them more accessible to diverse users in comparison with previous forms of digital tooling. In this study, we characterize spatial differences in U.S. residents' knowledge of a new generative AI tool, ChatGPT, through an analysis of state- and county-level search query data. In the first six months after the tool's release, we observe the highest rates of users searching for ChatGPT in West Coast states and persistently low rates of search in Appalachian and Gulf states. Counties with the highest rates of search are relatively more urbanized and have proportionally more educated, more economically advantaged, and more Asian residents in comparison with other counties or with the U.S. average. In multilevel models adjusting for socioeconomic and demographic factors as well as industry makeup, education is the strongest positive predictor of rates of search for generative AI tooling. Although generative AI technologies may be novel, early differences in uptake appear to be following familiar paths of digital marginalization.
- Abstract(参考訳): デジタル・ディビジョンは、社会的・経済的グループ間のデジタル・ツーリングへのアクセスと利用における格差を記述している。
生産性に強く影響する創発的な人工知能ツールは、これらの分割の影響を増大させる可能性がある。
しかし、これらのツールの可利用性、多言語性、多言語性は、従来のデジタルツールと比較して、多様なユーザにとってよりアクセスしやすいものになり得る。
本研究では,米国住民の新たな生成型AIツールChatGPTに関する知識の空間的差異を,州レベルと郡レベルの検索クエリデータの解析により特徴づける。
ツールのリリースから最初の6ヶ月で、西海岸州でChatGPTを検索するユーザの最高率と、アパラチア州とメキシコ湾州での検索率の持続的低さを観察した。
最も高い調査率の郡は比較的都市化されており、比例的に教育を受けており、経済的に有利であり、他の郡やアメリカの平均よりもアジア系住民が多い。
社会経済的・人口統計学的要因と産業構成を調整した多段階モデルにおいて、教育は生成的AIツールの探索率の最大の正の予測因子である。
生成的AI技術は斬新なものだが、初期の取り込みの違いは、デジタルの限界化の慣れ親しんだ道を辿っているように見える。
関連論文リスト
- Perceptions of Discriminatory Decisions of Artificial Intelligence: Unpacking the Role of Individual Characteristics [0.0]
個人差(デジタル自己効力性、技術的知識、平等への信念、政治的イデオロギー)は、AIの成果に対する認識と関連している。
デジタル自己効力と技術的知識は、AIに対する態度と肯定的に関連している。
リベラルイデオロギーは、結果信頼、より否定的な感情、より大きな懐疑主義と負の関連がある。
論文 参考訳(メタデータ) (2024-10-17T06:18:26Z) - Learning to Adopt Generative AI [2.919534741469257]
生成型AI導入プロセスにおいて,2種類のディジタル分割を提案する。
低学年および非白人は、ChatGPTから高いユーティリティゲインを得るが、そのユーティリティについてより遅い速度で学ぶ。
男性、若年者、ITのバックグラウンドを持つ人は、ChatGPTから高い利用率を得るだけでなく、その実用性についてより早く学ぶことができる。
論文 参考訳(メタデータ) (2024-10-17T00:32:45Z) - Social Intelligence Data Infrastructure: Structuring the Present and Navigating the Future [59.78608958395464]
私たちは、包括的な社会AI分類と480のNLPデータセットからなるデータライブラリで構成される、ソーシャルAIデータインフラストラクチャを構築しています。
インフラストラクチャにより、既存のデータセットの取り組みを分析し、異なるソーシャルインテリジェンスの観点から言語モデルのパフォーマンスを評価することができます。
多面的なデータセットの必要性、言語と文化の多様性の向上、より長期にわたる社会的状況、そして将来のソーシャルインテリジェンスデータ活動におけるよりインタラクティブなデータの必要性が示されている。
論文 参考訳(メタデータ) (2024-02-28T00:22:42Z) - Digital Divides in Scene Recognition: Uncovering Socioeconomic Biases in
Deep Learning Systems [0.0]
シーン分類における深部畳み込みニューラルネットワーク(dCNN)のバイアスについて検討する。
私たちは、ユーザー投稿のホーム写真やAirbnbのリスティングなど、グローバルおよび米国のソースから100万近い画像を使用します。
分析の結果,事前訓練したdCNNでは分類精度が低く,分類信頼性が低く,攻撃的なラベルを割り当てる傾向が高かった。
論文 参考訳(メタデータ) (2024-01-23T21:22:06Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Digital Divide: Mapping the geodemographics of internet accessibility
across Great Britain [0.0]
本研究は、イギリスにおけるデジタルアクセシビリティに関する最初の社会デマログラフ尺度を提案する。
デジタルアクセス不能は、インターネットにアクセスできない人や、インターネットをフル活用できない人1000万人に影響を及ぼす。
論文 参考訳(メタデータ) (2021-08-03T08:59:08Z) - Two-Faced Humans on Twitter and Facebook: Harvesting Social Multimedia
for Human Personality Profiling [74.83957286553924]
我々は、"PERS"と呼ばれる新しい多視点融合フレームワークを適用して、マイアーズ・ブリッグス・パーソナリティ・タイプインジケータを推定する。
実験の結果,多視点データからパーソナリティ・プロファイリングを学習する能力は,多様なソーシャル・マルチメディア・ソースからやってくるデータを効率的に活用できることが示唆された。
論文 参考訳(メタデータ) (2021-06-20T10:48:49Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z) - GAEA: Graph Augmentation for Equitable Access via Reinforcement Learning [50.90625274621288]
異なるサブ人口によるリソースへの別のアクセスは、社会および社会技術ネットワークにおける一般的な問題です。
予算制約下でグラフエッジを編集することにより,ネットワークシステムにおける公平性を高めるため,新たな問題クラスであるグラフ拡張・等価アクセス(GAEA)を導入する。
論文 参考訳(メタデータ) (2020-12-07T18:29:32Z) - Computer-Aided Personalized Education [15.811740322935476]
過去10年間で、導入コースを受講する米国の学生数は3倍に増えている。
大規模なオープンオンラインコース(MOOC)は、この制約を緩和する方法として推進されている。
計算ツールに依存したパーソナライズド教育はこの課題に対処できる。
論文 参考訳(メタデータ) (2020-07-07T18:00:04Z) - Predicting Livelihood Indicators from Community-Generated Street-Level
Imagery [70.5081240396352]
本稿では,クラウドソースによるストリートレベルの画像から重要な生活指標を予測するための,安価でスケーラブルで解釈可能なアプローチを提案する。
全国的に代表される世帯調査で収集した地上データと比較することにより,貧困,人口,健康の指標を正確に予測する上でのアプローチの有効性を実証した。
論文 参考訳(メタデータ) (2020-06-15T18:12:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。