Warped Time Series Anomaly Detection
- URL: http://arxiv.org/abs/2404.12134v1
- Date: Thu, 18 Apr 2024 12:35:24 GMT
- Title: Warped Time Series Anomaly Detection
- Authors: Charlotte Lacoquelle, Xavier Pucel, Louise Travé-Massuyès, Axel Reymonet, Benoît Enaux,
- Abstract summary: This paper addresses the problem of detecting time series outliers, focusing on systems with repetitive behavior.
The overall approach, named WarpEd Time Series ANomaly Detection (WETSAND), makes use of the Dynamic Time Warping algorithm and its variants.
The experiments show that wetsand scales to large signals, computes human-friendly prototypes, works with very little data, and outperforms some general purpose anomaly detection approaches such as autoencoders.
- Score: 0.94371657253557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the problem of detecting time series outliers, focusing on systems with repetitive behavior, such as industrial robots operating on production lines.Notable challenges arise from the fact that a task performed multiple times may exhibit different duration in each repetition and that the time series reported by the sensors are irregularly sampled because of data gaps. The anomaly detection approach presented in this paper consists of three stages.The first stage identifies the repetitive cycles in the lengthy time series and segments them into individual time series corresponding to one task cycle, while accounting for possible temporal distortions.The second stage computes a prototype for the cycles using a GPU-based barycenter algorithm, specifically tailored for very large time series.The third stage uses the prototype to detect abnormal cycles by computing an anomaly score for each cycle.The overall approach, named WarpEd Time Series ANomaly Detection (WETSAND), makes use of the Dynamic Time Warping algorithm and its variants because they are suited to the distorted nature of the time series.The experiments show that \wetsand scales to large signals, computes human-friendly prototypes, works with very little data, and outperforms some general purpose anomaly detection approaches such as autoencoders.
Related papers
- Robust Group Anomaly Detection for Quasi-Periodic Network Time Series [47.60720976101336]
We propose a framework to identify unusual and interesting time series within a network time series database.<n>We develop a surrogate-based optimization algorithm that can efficiently train the seq2GMM model.
arXiv Detail & Related papers (2025-06-20T08:11:04Z) - Topology-driven identification of repetitions in multi-variate time series [0.6990493129893112]
We present a persistent homology framework to estimate recurrence times in multi-variate time series.<n>We provide three specialized methods within our framework that are provably stable and validate them using real-world data.
arXiv Detail & Related papers (2025-05-15T06:35:32Z) - GraphSubDetector: Time Series Subsequence Anomaly Detection via Density-Aware Adaptive Graph Neural Network [24.37330736887409]
We present a novel approach to subsequence anomaly detection, namely GraphSubDetector.
First, it adaptively learns the appropriate subsequence length with a length selection mechanism that highlights the characteristics of both normal and anomalous patterns.
Second, we propose a density-aware adaptive graph neural network (DAGNN), which can generate further robust representations against variance of normal data for anomaly detection by message passing between subsequences.
arXiv Detail & Related papers (2024-11-26T08:36:07Z) - Understanding Time Series Anomaly State Detection through One-Class
Classification [13.822504564241454]
In this article, we try to re-understand and define the time series anomaly detection problem through one-class classification (OCC)
We first use processes and hypothesis testing to strictly define the 'time series anomaly state detection problem', and its corresponding anomalies.
Then, we use the time series classification dataset to construct an artificial dataset corresponding to the problem.
We compile 38 anomaly detection algorithms and correct some of the algorithms to adapt to handle this problem.
arXiv Detail & Related papers (2024-02-03T03:43:04Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Compatible Transformer for Irregularly Sampled Multivariate Time Series [75.79309862085303]
We propose a transformer-based encoder to achieve comprehensive temporal-interaction feature learning for each individual sample.
We conduct extensive experiments on 3 real-world datasets and validate that the proposed CoFormer significantly and consistently outperforms existing methods.
arXiv Detail & Related papers (2023-10-17T06:29:09Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - DCdetector: Dual Attention Contrastive Representation Learning for Time
Series Anomaly Detection [26.042898544127503]
Time series anomaly detection is critical for a wide range of applications.
It aims to identify deviant samples from the normal sample distribution in time series.
We propose DCdetector, a multi-scale dual attention contrastive representation learning model.
arXiv Detail & Related papers (2023-06-17T13:40:15Z) - TimesNet: Temporal 2D-Variation Modeling for General Time Series
Analysis [80.56913334060404]
Time series analysis is of immense importance in applications, such as weather forecasting, anomaly detection, and action recognition.
Previous methods attempt to accomplish this directly from the 1D time series.
We ravel out the complex temporal variations into the multiple intraperiod- and interperiod-variations.
arXiv Detail & Related papers (2022-10-05T12:19:51Z) - Tripletformer for Probabilistic Interpolation of Irregularly sampled
Time Series [6.579888565581481]
We present a novel encoder-decoder architecture called "Tripletformer" for probabilistic of irregularly sampled time series with missing values.
This attention-based model operates on sets of observations, where each element is composed of a triple time, channel, and value.
Results indicate an improvement in negative loglikelihood error by up to 32% on real-world datasets and 85% on synthetic datasets.
arXiv Detail & Related papers (2022-10-05T08:31:05Z) - Triformer: Triangular, Variable-Specific Attentions for Long Sequence
Multivariate Time Series Forecasting--Full Version [50.43914511877446]
We propose a triangular, variable-specific attention to ensure high efficiency and accuracy.
We show that Triformer outperforms state-of-the-art methods w.r.t. both accuracy and efficiency.
arXiv Detail & Related papers (2022-04-28T20:41:49Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.