mABC: multi-Agent Blockchain-Inspired Collaboration for root cause analysis in micro-services architecture
- URL: http://arxiv.org/abs/2404.12135v3
- Date: Mon, 23 Dec 2024 17:46:10 GMT
- Title: mABC: multi-Agent Blockchain-Inspired Collaboration for root cause analysis in micro-services architecture
- Authors: Wei Zhang, Hongcheng Guo, Jian Yang, Zhoujin Tian, Yi Zhang, Chaoran Yan, Zhoujun Li, Tongliang Li, Xu Shi, Liangfan Zheng, Bo Zhang,
- Abstract summary: We propose a pioneering framework, multi-Agent-inspired Collaboration for root cause analysis in micro-services architecture (mABC)<n>mABC offers a comprehensive automated root cause analysis and resolution in micro-services architecture and significantly improves the IT Operation domain.
- Score: 31.944353229461157
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Root cause analysis (RCA) in Micro-services architecture (MSA) with escalating complexity encounters complex challenges in maintaining system stability and efficiency due to fault propagation and circular dependencies among nodes. Diverse root cause analysis faults require multi-agents with diverse expertise. To mitigate the hallucination problem of large language models (LLMs), we design blockchain-inspired voting to ensure the reliability of the analysis by using a decentralized decision-making process. To avoid non-terminating loops led by common circular dependency in MSA, we objectively limit steps and standardize task processing through Agent Workflow. We propose a pioneering framework, multi-Agent Blockchain-inspired Collaboration for root cause analysis in micro-services architecture (mABC), where multiple agents based on the powerful LLMs follow Agent Workflow and collaborate in blockchain-inspired voting. Specifically, seven specialized agents derived from Agent Workflow each provide valuable insights towards root cause analysis based on their expertise and the intrinsic software knowledge of LLMs collaborating within a decentralized chain. Our experiments on the AIOps challenge dataset and a newly created Train-Ticket dataset demonstrate superior performance in identifying root causes and generating effective resolutions. The ablation study further highlights Agent Workflow, multi-agent, and blockchain-inspired voting is crucial for achieving optimal performance. mABC offers a comprehensive automated root cause analysis and resolution in micro-services architecture and significantly improves the IT Operation domain. The code and dataset are in https://github.com/zwpride/mABC.
Related papers
- Which Agent Causes Task Failures and When? On Automated Failure Attribution of LLM Multi-Agent Systems [50.29939179830491]
Failure attribution in LLM multi-agent systems remains underexplored and labor-intensive.
We develop and evaluate three automated failure attribution methods, summarizing their corresponding pros and cons.
The best method achieves 53.5% accuracy in identifying failure-responsible agents but only 14.2% in pinpointing failure steps.
arXiv Detail & Related papers (2025-04-30T23:09:44Z) - TAMO:Fine-Grained Root Cause Analysis via Tool-Assisted LLM Agent with Multi-Modality Observation Data [33.5606443790794]
Large language models (LLMs) have made breakthroughs in contextual inference and domain knowledge integration.
We propose a tool-assisted LLM agent with multi-modality observation data, namely TAMO, for fine-grained root cause analysis.
arXiv Detail & Related papers (2025-04-29T06:50:48Z) - Why Do Multi-Agent LLM Systems Fail? [91.39266556855513]
We present MAST (Multi-Agent System Failure taxonomy), the first empirically grounded taxonomy designed to understand MAS failures.
We analyze seven popular MAS frameworks across over 200 tasks, involving six expert human annotators.
We identify 14 unique failure modes, organized into 3 overarching categories, (i) specification issues, (ii) inter-agent misalignment, and (iii) task verification.
arXiv Detail & Related papers (2025-03-17T19:04:38Z) - Adaptive Stream Processing on Edge Devices through Active Inference [5.5676731834895765]
We present a novel Machine Learning paradigm based on Active Inference (AIF)
AIF describes how the brain constantly predicts and evaluates sensory information to decrease long-term surprise.
Our method guarantees full transparency on the decision making, making the interpretation of the results and the troubleshooting effortless.
arXiv Detail & Related papers (2024-09-26T15:12:41Z) - LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents [0.0]
We propose a novel LLM-based Agent Unified Modeling Framework (LLM-Agent-UMF)
Our framework distinguishes between the different components of an LLM-based agent, setting LLMs and tools apart from a new element, the core-agent.
We evaluate our framework by applying it to thirteen state-of-the-art agents, thereby demonstrating its alignment with their functionalities.
arXiv Detail & Related papers (2024-09-17T17:54:17Z) - Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering [0.0]
In the chemical and process industries, Process Flow Diagrams (PFDs) and Piping and Instrumentation Diagrams (P&IDs) are critical for design, construction, and maintenance.
Recent advancements in Generative AI have shown promise in understanding and interpreting process diagrams for Visual Question Answering (VQA)
We propose a secure, on-premises enterprise solution using a hierarchical, multi-agent Retrieval Augmented Generation (RAG) framework.
arXiv Detail & Related papers (2024-08-24T19:34:04Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
This paper investigates the interactions between multiple agents within Large Language Models (LLMs) in the context of programming and coding tasks.
We utilize the AutoGen framework to facilitate communication among agents, evaluating different configurations based on the success rates from 40 random runs for each setup.
arXiv Detail & Related papers (2024-08-23T23:11:08Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - CHASE: A Causal Hypergraph based Framework for Root Cause Analysis in Multimodal Microservice Systems [29.424326542377386]
We propose a Causal Heterogeneous grAph baSed framEwork for root cause analysis, namely CHASE, for microservice systems with multimodal data.
CHASE learns from the constructed hypergraph with hyperedges representing the flow of causality and performs root cause localization.
arXiv Detail & Related papers (2024-06-28T07:46:51Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents [76.95062553043607]
evaluating large language models (LLMs) is essential for understanding their capabilities and facilitating their integration into practical applications.
We introduce AgentBoard, a pioneering comprehensive benchmark and accompanied open-source evaluation framework tailored to analytical evaluation of LLM agents.
arXiv Detail & Related papers (2024-01-24T01:51:00Z) - Agents meet OKR: An Object and Key Results Driven Agent System with
Hierarchical Self-Collaboration and Self-Evaluation [25.308341461293857]
OKR-Agent is designed to enhance the capabilities of Large Language Models (LLMs) in task-solving.
Our framework includes two novel modules: hierarchical Objects and Key Results generation and multi-level evaluation.
arXiv Detail & Related papers (2023-11-28T06:16:30Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
Large Language Models (LLMs) are becoming increasingly smart and autonomous, targeting real-world pragmatic missions beyond traditional NLP tasks.
We present AgentBench, a benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities.
arXiv Detail & Related papers (2023-08-07T16:08:11Z) - PyRCA: A Library for Metric-based Root Cause Analysis [66.72542200701807]
PyRCA is an open-source machine learning library of Root Cause Analysis (RCA) for Artificial Intelligence for IT Operations (AIOps)
It provides a holistic framework to uncover the complicated metric causal dependencies and automatically locate root causes of incidents.
arXiv Detail & Related papers (2023-06-20T09:55:10Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency.
We propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem.
Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines.
arXiv Detail & Related papers (2022-11-29T17:10:24Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today.
The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed.
arXiv Detail & Related papers (2022-04-29T08:06:05Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.