論文の概要: The Neutrality Fallacy: When Algorithmic Fairness Interventions are (Not) Positive Action
- arxiv url: http://arxiv.org/abs/2404.12143v1
- Date: Thu, 18 Apr 2024 12:44:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 19:11:44.569642
- Title: The Neutrality Fallacy: When Algorithmic Fairness Interventions are (Not) Positive Action
- Title(参考訳): 中立性の誤り:アルゴリズム的公正介入が(Not)正の作用であるとき
- Authors: Hilde Weerts, Raphaële Xenidis, Fabien Tarissan, Henrik Palmer Olsen, Mykola Pechenizkiy,
- Abstract要約: 我々は、アルゴリズムの公正な介入は差別を防ぐための手段として解釈されるべきであると主張している。
私たちは、義務から「害を犯さない」へ、アルゴリズムによる意思決定のためのより適切なフレームワークに移行することを提案します。
- 参考スコア(独自算出の注目度): 12.310813202783823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Various metrics and interventions have been developed to identify and mitigate unfair outputs of machine learning systems. While individuals and organizations have an obligation to avoid discrimination, the use of fairness-aware machine learning interventions has also been described as amounting to 'algorithmic positive action' under European Union (EU) non-discrimination law. As the Court of Justice of the European Union has been strict when it comes to assessing the lawfulness of positive action, this would impose a significant legal burden on those wishing to implement fair-ml interventions. In this paper, we propose that algorithmic fairness interventions often should be interpreted as a means to prevent discrimination, rather than a measure of positive action. Specifically, we suggest that this category mistake can often be attributed to neutrality fallacies: faulty assumptions regarding the neutrality of fairness-aware algorithmic decision-making. Our findings raise the question of whether a negative obligation to refrain from discrimination is sufficient in the context of algorithmic decision-making. Consequently, we suggest moving away from a duty to 'not do harm' towards a positive obligation to actively 'do no harm' as a more adequate framework for algorithmic decision-making and fair ml-interventions.
- Abstract(参考訳): 機械学習システムの不公平な出力を特定し、軽減するために、様々なメトリクスと介入が開発されている。
個人や組織には差別を避ける義務があるが、公正を意識した機械学習の介入の使用は、欧州連合(EU)非差別法の下での「倫理的肯定的な行動」に相当すると説明されている。
欧州連合司法裁判所は、前向きな行動の合法性を評価することに関して厳格であり、公正な介入を希望する者には重大な法的負担を課すことになる。
本稿では,アルゴリズムによる公平な介入を,肯定的な行動の尺度ではなく,差別を防ぐ手段として解釈すべきであることを示す。
具体的には、このカテゴリーの誤りは、しばしば中立性の誤認(すなわち、公平性を意識したアルゴリズムによる意思決定の中立性に関する誤った仮定)に起因する可能性があることを示唆する。
本研究は, アルゴリズムによる意思決定の文脈において, 差別を控える負の義務が十分であるかどうかを問うものである。
その結果、アルゴリズムによる意思決定と公平なml介入のためのより適切な枠組みとして、「害を犯さない」という積極的義務への「害を犯さない」という義務から脱却することを提案する。
関連論文リスト
- Fairness-Accuracy Trade-Offs: A Causal Perspective [58.06306331390586]
我々は、初めて因果レンズから公正性と正確性の間の張力を分析する。
因果的制約を強制することは、しばしば人口集団間の格差を減少させることを示す。
因果制約付きフェアラーニングのための新しいニューラルアプローチを導入する。
論文 参考訳(メタデータ) (2024-05-24T11:19:52Z) - Compatibility of Fairness Metrics with EU Non-Discrimination Laws:
Demographic Parity & Conditional Demographic Disparity [3.5607241839298878]
実証的な証拠は、機械学習(ML)技術によって駆動されるアルゴリズムによる決定が、法的に保護されたグループに対する差別を脅かしたり、新たな不公平な情報源を創り出すことを示唆している。
この研究は、公正度メトリックと公正度制約による法的公正性を保証するためのポイントを評価することを目的としています。
我々の実験と分析は、手元にあるケースと法的正当性に応じて、AIによる意思決定が法的な観点から公平である可能性を示唆している。
論文 参考訳(メタデータ) (2023-06-14T09:38:05Z) - Causal Fairness for Outcome Control [68.12191782657437]
本稿では,自動システムにおいて,公平かつ公平な結果変数を最適化することを目的とした,結果制御と呼ばれる特定の意思決定タスクについて検討する。
本稿では、まず因果レンズを通して利益の概念を分析し、特定の個人が肯定的な決定によってどれだけの利益を得られるかを明らかにする。
次に、保護された属性の影響を受けている可能性があることに留意し、これを分析するために使用できる因果的ツールを提案する。
論文 参考訳(メタデータ) (2023-06-08T09:31:18Z) - Algorithmic Unfairness through the Lens of EU Non-Discrimination Law: Or
Why the Law is not a Decision Tree [5.153559154345212]
我々は、EUの非差別法は、コンピュータサイエンス文学において提案されたアルゴリズム的公正の概念と一致していることを示す。
公正度指標と技術的介入の規範的基盤を設定し、これらをEU司法裁判所の法的理由と比較した。
我々は、AI実践者や規制当局に影響を及ぼすと結論づける。
論文 参考訳(メタデータ) (2023-05-05T12:00:39Z) - Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - Beyond Incompatibility: Trade-offs between Mutually Exclusive Fairness Criteria in Machine Learning and Law [2.959308758321417]
本稿では,3つのフェアネス基準を連続的に補間する新しいアルゴリズム(FAir Interpolation Method: FAIM)を提案する。
我々は,合成データ,CompASデータセット,電子商取引部門による新たな実世界のデータセットに適用した場合のアルゴリズムの有効性を実証する。
論文 参考訳(メタデータ) (2022-12-01T12:47:54Z) - Fair Machine Learning in Healthcare: A Review [90.22219142430146]
我々は、機械学習と医療格差における公正性の交差を分析する。
機械学習の観点から、関連する公正度メトリクスを批判的にレビューする。
本稿では,医療における倫理的かつ公平なMLアプリケーション開発を約束する新たな研究指針を提案する。
論文 参考訳(メタデータ) (2022-06-29T04:32:10Z) - Equality before the Law: Legal Judgment Consistency Analysis for
Fairness [55.91612739713396]
本論文では,LInCo(Legal Inconsistency Coefficient)の判定不整合性評価指標を提案する。
法的な判断予測(LJP)モデルを用いて異なる集団の裁判官をシミュレートし、異なる集団で訓練されたLJPモデルによる判断結果の不一致を判断する。
私達はLInCoを実際の場合の不一致を探検するために使用し、次の観察に来ます:(1)地域およびジェンダーの不一致は法制度でありますが、ジェンダーの不一致は地方不一致より大いにより少しです。
論文 参考訳(メタデータ) (2021-03-25T14:28:00Z) - Affirmative Algorithms: The Legal Grounds for Fairness as Awareness [0.0]
このようなアプローチがいかに「算術的肯定的行動」とみなされるかについて議論する。
我々は、政府契約の事件はアルゴリズムの公正性に代替的な根拠を与えると論じている。
我々は、偏り緩和が特定の原因と偏りのメカニズムに合わせたものであることを保証するために、アルゴリズム的公平性と因果推論の交点におけるさらなる研究を求める。
論文 参考訳(メタデータ) (2020-12-18T22:53:20Z) - Why Fairness Cannot Be Automated: Bridging the Gap Between EU
Non-Discrimination Law and AI [10.281644134255576]
欧州における差別の概念と既存の公正性に関する統計的尺度の間には、重大な矛盾がある。
我々は、人間ではなくAIが差別するときに、非差別法によって提供される法的保護がいかに挑戦されるかを示す。
標準基準統計量として「条件付き人口格差」(CDD)を提案する。
論文 参考訳(メタデータ) (2020-05-12T16:30:12Z) - On Consequentialism and Fairness [64.35872952140677]
機械学習におけるフェアネスの共通定義について、逐次的批判を行う。
学習とランダム化の問題に関するより広範な議論で締めくくります。
論文 参考訳(メタデータ) (2020-01-02T05:39:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。