論文の概要: Learning the Domain Specific Inverse NUFFT for Accelerated Spiral MRI using Diffusion Models
- arxiv url: http://arxiv.org/abs/2404.12361v2
- Date: Fri, 10 May 2024 18:47:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 23:10:20.362052
- Title: Learning the Domain Specific Inverse NUFFT for Accelerated Spiral MRI using Diffusion Models
- Title(参考訳): 拡散モデルを用いた加速スパイラルMRIのための領域固有逆NUFFTの学習
- Authors: Trevor J. Chan, Chamith S. Rajapakse,
- Abstract要約: 我々は多コイル高アンサンプドスパイラルMRIのための生成拡散モデルに基づく再構成アルゴリズムを作成する。
超高速スキャン時間(2D画像では0.02秒)で再構成した画像に高品質(構造的類似度 > 0.87)を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning methods for accelerated MRI achieve state-of-the-art results but largely ignore additional speedups possible with noncartesian sampling trajectories. To address this gap, we created a generative diffusion model-based reconstruction algorithm for multi-coil highly undersampled spiral MRI. This model uses conditioning during training as well as frequency-based guidance to ensure consistency between images and measurements. Evaluated on retrospective data, we show high quality (structural similarity > 0.87) in reconstructed images with ultrafast scan times (0.02 seconds for a 2D image). We use this algorithm to identify a set of optimal variable-density spiral trajectories and show large improvements in image quality compared to conventional reconstruction using the non-uniform fast Fourier transform. By combining efficient spiral sampling trajectories, multicoil imaging, and deep learning reconstruction, these methods could enable the extremely high acceleration factors needed for real-time 3D imaging.
- Abstract(参考訳): 高速MRIのための深層学習法は最先端の結果を得るが、非カルテシアンサンプリングトラジェクトリで可能となる追加のスピードアップは無視される。
このギャップに対処するため,我々は多コイル高アンサンプドスパイラルMRIのための生成拡散モデルに基づく再構成アルゴリズムを開発した。
このモデルは、トレーニング中にコンディショニングと周波数ベースのガイダンスを使用して、画像と測定の整合性を保証する。
超高速スキャン時間(2D画像では0.02秒)で再構成した画像の画質(構造的類似度>0.87)を示す。
このアルゴリズムを用いて最適な可変密度スパイラル軌道の集合を同定し、非一様高速フーリエ変換を用いた従来の再構成と比較して画像品質を大幅に向上させる。
効率的なスパイラルサンプリング軌道、マルチコイルイメージング、ディープラーニング再構成を組み合わせることで、リアルタイム3Dイメージングに必要な極めて高い加速度因子を実現できる。
関連論文リスト
- R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための最初の3DGSベースのフレームワークであるR2-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - Attention-aware non-rigid image registration for accelerated MR imaging [10.47044784972188]
我々は,MRIの完全サンプリングと高速化のために,非厳密なペアワイズ登録を行うことのできる,注目に敏感なディープラーニングベースのフレームワークを提案する。
我々は、複数の解像度レベルで、登録された画像ペア間の類似性マップを構築するために、局所的な視覚表現を抽出する。
本モデルでは, 異なるサンプリング軌道にまたがって, 安定かつ一貫した運動場を導出することを示す。
論文 参考訳(メタデータ) (2024-04-26T14:25:07Z) - Improved Multi-Shot Diffusion-Weighted MRI with Zero-Shot
Self-Supervised Learning Reconstruction [7.347468593124183]
ゼロMIRIDと呼ばれる新しいmsEPI再構成手法(改良拡散MRIのためのマルチショット画像再構成のためのゼロショット自己教師型学習)を提案する。
本手法は、深層学習に基づく画像正規化技術を組み込むことで、msEPIデータを共同で再構成する。
In-vivo実験で示されるように、最先端の並列イメージング法と比較して優れた結果が得られる。
論文 参考訳(メタデータ) (2023-08-09T17:54:56Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - Image Reconstruction for Accelerated MR Scan with Faster Fourier
Convolutional Neural Networks [87.87578529398019]
部分走査は、磁気共鳴イメージング(MRI)データ取得を2次元および3次元の両方で加速する一般的な手法である。
本稿では,Faster Fourier Convolution (FasterFC) と呼ばれる新しい畳み込み演算子を提案する。
2次元加速MRI法であるFasterFC-End-to-End-VarNetは、FasterFCを用いて感度マップと再構成品質を改善する。
k空間領域再構成を誘導する単一グループアルゴリズムを用いたFasterFC-based Single-to-group Network (FAS-Net) と呼ばれる3次元加速MRI法
論文 参考訳(メタデータ) (2023-06-05T13:53:57Z) - Deep MRI Reconstruction with Radial Subsampling [2.7998963147546148]
k空間データにサブサンプリングマスクを適用することは、実際の臨床環境でk空間データの迅速な取得をシミュレートする方法である。
訓練された深層ニューラルネットワークが出力する再構成の質に対して,リチリニア・ラジアル・リフレクション・サブサンプリングを適用させる効果を比較検討し,検討した。
論文 参考訳(メタデータ) (2021-08-17T17:45:51Z) - Accelerating 3D MULTIPLEX MRI Reconstruction with Deep Learning [7.85035197356331]
マルチフリップ角(FA)とマルチエコレックスGRE法(MULTIP MRI)は1つのスキャンで同時に複数のパラメトリック画像を取得するために開発された。
3次元MRIデータ再構築のための深層学習フレームワークを提案する。
提案する深層学習法は,画像品質と再構成時間において良好な性能を示す。
論文 参考訳(メタデータ) (2021-05-17T21:06:14Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
本稿では,ISTAアルゴリズムの展開に基づく時空間領域におけるサブNyquistサンプルからの再構成手法を提案する。
本手法は,高品質な撮像性能を確保しつつ,配列要素数,サンプリングレート,計算時間を削減できる。
論文 参考訳(メタデータ) (2021-03-01T19:19:38Z) - Training Variational Networks with Multi-Domain Simulations:
Speed-of-Sound Image Reconstruction [5.47832435255656]
変分ネットワーク(VN)は画像再構成における逆問題を最適化するための学習に基づく潜在的アプローチであることが示されている。
本稿では,従来のトランスデューサと単側組織アクセスを用いたパルスエコーSoS画像再構成問題に対するVNソリューションを初めて提示する。
提案手法とマルチソースドメイントレーニングを組み合わせることで,VNのドメイン適応能力を大幅に向上することを示す。
論文 参考訳(メタデータ) (2020-06-25T13:32:08Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。