A dancing bear, a colleague, or a sharpened toolbox? The cautious adoption of generative AI technologies in digital humanities research
- URL: http://arxiv.org/abs/2404.12458v3
- Date: Mon, 14 Jul 2025 18:43:30 GMT
- Title: A dancing bear, a colleague, or a sharpened toolbox? The cautious adoption of generative AI technologies in digital humanities research
- Authors: Rongqian Ma, Meredith Dedema, Andrew Cox,
- Abstract summary: The advent of generative artificial intelligence (GenAI) technologies has been changing the research landscape.<n>This article investigates how Digital Humanities (DH) scholars adopt and critically evaluate GenAI technologies for research.
- Score: 1.8434042562191815
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The advent of generative artificial intelligence (GenAI) technologies has been changing the research landscape and potentially has significant implications for Digital Humanities (DH), a field inherently intertwined with technologies. This article investigates how DH scholars adopt and critically evaluate GenAI technologies for research. Drawing on 76 responses collected from an international survey study and 15 semi-structured interviews with DH scholars, we explored the rationale for adopting GenAI tools in research, identified the specific practices of using GenAI tools, and analyzed scholars' collective perceptions regarding the benefits, risks, and challenges. The results reveal that DH research communities hold divided opinions and differing imaginations towards the role of GenAI in DH scholarship. While scholars acknowledge the benefits of GenAI in enhancing research efficiency and enabling reskilling, many remain concerned about its potential to disrupt their intellectual identities. Situated within the history of DH and viewed through the lens of Actor-Network Theory, our findings suggest that the adoption of GenAI is gradually changing the field, though this transformation remains contested, shaped by ongoing negotiations among multiple human and non-human actors. Our study is one of the first empirical analyses on this topic and has the potential to serve as a building block for future inquiries into the impact of GenAI on DH scholarship.
Related papers
- The GenAI Generation: Student Views of Awareness, Preparedness, and Concern [1.5709900716890133]
Outpacing the development of uniform policies and structures, GenAI has heralded a unique era and given rise to the GenAI Generation.<n>This study examines students' perceptions of GenAI through a concise survey with optional open-ended questions.<n>Students with greater curricular exposure to GenAI tend to feel more prepared, while those without it more often express vulnerability and uncertainty.
arXiv Detail & Related papers (2025-05-04T19:37:13Z) - Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
A plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently.
Ethical concerns regarding shortcomings of these tools and potential for misuse take a particularly prominent place in our discussion.
arXiv Detail & Related papers (2025-02-07T18:26:45Z) - Engineering Educators' Perspectives on the Impact of Generative AI in Higher Education [4.06279597585806]
This study reports findings from a survey of engineering educators on their use of and perspectives toward generative AI.<n>We asked them about their use of and comfort with GenAI, their overall perspectives on GenAI, the challenges and potential harms of using it for teaching, learning, and research, and examined whether their approach to using and integrating GenAI in their classroom influenced their experiences with GenAI and perceptions of it.
arXiv Detail & Related papers (2025-02-01T21:29:53Z) - Position: Evaluating Generative AI Systems Is a Social Science Measurement Challenge [78.35388859345056]
We argue that the ML community would benefit from learning from and drawing on the social sciences when developing measurement instruments for evaluating GenAI systems.<n>We present a four-level framework, grounded in measurement theory from the social sciences, for measuring concepts related to the capabilities, behaviors, and impacts of GenAI systems.
arXiv Detail & Related papers (2025-02-01T21:09:51Z) - Research Integrity and GenAI: A Systematic Analysis of Ethical Challenges Across Research Phases [0.0]
The rapid development and use of generative AI (GenAI) tools in academia presents complex and multifaceted ethical challenges for its users.
This study aims to examine the ethical concerns arising from the use of GenAI across different phases of research.
arXiv Detail & Related papers (2024-12-13T13:31:45Z) - "So what if I used GenAI?" -- Implications of Using Cloud-based GenAI in Software Engineering Research [0.0]
This paper sheds light on the various research aspects in which GenAI is used, thus raising awareness of its legal implications to novice and budding researchers.<n>We summarize key aspects regarding our current knowledge that every software researcher involved in using GenAI should be aware of to avoid critical mistakes that may expose them to liability claims.
arXiv Detail & Related papers (2024-12-10T06:18:15Z) - Early Adoption of Generative Artificial Intelligence in Computing Education: Emergent Student Use Cases and Perspectives in 2023 [38.83649319653387]
There is limited prior research on computing students' use and perceptions of GenAI.
We surveyed all computer science majors in a small engineering-focused R1 university.
We discuss the impact of our findings on the emerging conversation around GenAI and education.
arXiv Detail & Related papers (2024-11-17T20:17:47Z) - Measuring Human Contribution in AI-Assisted Content Generation [68.03658922067487]
This study raises the research question of measuring human contribution in AI-assisted content generation.
By calculating mutual information between human input and AI-assisted output relative to self-information of AI-assisted output, we quantify the proportional information contribution of humans in content generation.
arXiv Detail & Related papers (2024-08-27T05:56:04Z) - Generative AI Tools in Academic Research: Applications and Implications for Qualitative and Quantitative Research Methodologies [0.0]
This study examines the impact of Generative Artificial Intelligence (GenAI) on academic research, focusing on its application to qualitative and quantitative data analysis.
GenAI tools evolve rapidly, they offer new possibilities for enhancing research productivity and democratising complex analytical processes.
Their integration into academic practice raises significant questions regarding research integrity and security, authorship, and the changing nature of scholarly work.
arXiv Detail & Related papers (2024-08-13T13:10:03Z) - Model-based Maintenance and Evolution with GenAI: A Look into the Future [47.93555901495955]
We argue that Generative Artificial Intelligence (GenAI) can be used as a means to address the limitations of Model-Based Engineering (MBM&E)
We propose that GenAI can be used in MBM&E for: reducing engineers' learning curve, maximizing efficiency with recommendations, or serving as a reasoning tool to understand domain problems.
arXiv Detail & Related papers (2024-07-09T23:13:26Z) - Higher education assessment practice in the era of generative AI tools [0.37282630026096586]
This study experimented using three assessment instruments from data science, data analytics, and construction management disciplines.
Our findings revealed that GenAI tools exhibit subject knowledge, problem-solving, analytical, critical thinking, and presentation skills.
Based on our findings, we made recommendations on how AI tools can be utilised for teaching and learning in HE.
arXiv Detail & Related papers (2024-04-01T10:43:50Z) - From Google Gemini to OpenAI Q* (Q-Star): A Survey of Reshaping the
Generative Artificial Intelligence (AI) Research Landscape [5.852005817069381]
The study critically examined the current state and future trajectory of generative Artificial Intelligence (AI)
It explored how innovations like Google's Gemini and the anticipated OpenAI Q* project are reshaping research priorities and applications across various domains.
The study highlighted the importance of incorporating ethical and human-centric methods in AI development, ensuring alignment with societal norms and welfare.
arXiv Detail & Related papers (2023-12-18T01:11:39Z) - ChatGPT and Beyond: The Generative AI Revolution in Education [0.21756081703275998]
This survey examines academic literature published between November, 2022 and July, 2023.
It aims to illuminate the evolving role of generative AI models, particularly ChatGPT, in education.
The findings of this review will empower educators, researchers, and policymakers to make informed decisions about the integration of AI technologies into learning environments.
arXiv Detail & Related papers (2023-11-26T05:34:22Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Human-Centered Responsible Artificial Intelligence: Current & Future
Trends [76.94037394832931]
In recent years, the CHI community has seen significant growth in research on Human-Centered Responsible Artificial Intelligence.
All of this work is aimed at developing AI that benefits humanity while being grounded in human rights and ethics, and reducing the potential harms of AI.
In this special interest group, we aim to bring together researchers from academia and industry interested in these topics to map current and future research trends.
arXiv Detail & Related papers (2023-02-16T08:59:42Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Characterising Research Areas in the field of AI [68.8204255655161]
We identified the main conceptual themes by performing clustering analysis on the co-occurrence network of topics.
The results highlight the growing academic interest in research themes like deep learning, machine learning, and internet of things.
arXiv Detail & Related papers (2022-05-26T16:30:30Z) - Towards a Science of Human-AI Decision Making: A Survey of Empirical
Studies [22.214709837295906]
There is growing interest in the research community to augment human decision making with AI assistance.
The emerging field of human-AI decision making must embrace empirical approaches to form a foundational understanding of how humans interact and work with AI.
arXiv Detail & Related papers (2021-12-21T19:00:02Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.