Advancing Applications of Satellite Photogrammetry: Novel Approaches for Built-up Area Modeling and Natural Environment Monitoring using Stereo/Multi-view Satellite Image-derived 3D Data
- URL: http://arxiv.org/abs/2404.12487v1
- Date: Thu, 18 Apr 2024 20:02:52 GMT
- Title: Advancing Applications of Satellite Photogrammetry: Novel Approaches for Built-up Area Modeling and Natural Environment Monitoring using Stereo/Multi-view Satellite Image-derived 3D Data
- Authors: Shengxi Gui,
- Abstract summary: This dissertation explores several novel approaches based on stereo and multi-view satellite image-derived 3D geospatial data.
It introduces four parts of novel approaches that deal with the spatial and temporal challenges with satellite-derived 3D data.
Overall, this dissertation demonstrates the extensive potential of satellite photogrammetry applications in addressing urban and environmental challenges.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of remote sensing technology in recent decades, spaceborne sensors with sub-meter and meter spatial resolution (Worldview and PlanetScope) have achieved a considerable image quality to generate 3D geospatial data via a stereo matching pipeline. These achievements have significantly increased the data accessibility in 3D, necessitating adapting these 3D geospatial data to analyze human and natural environments. This dissertation explores several novel approaches based on stereo and multi-view satellite image-derived 3D geospatial data, to deal with remote sensing application issues for built-up area modeling and natural environment monitoring, including building model 3D reconstruction, glacier dynamics tracking, and lake algae monitoring. Specifically, the dissertation introduces four parts of novel approaches that deal with the spatial and temporal challenges with satellite-derived 3D data. The first study advances LoD-2 building modeling from satellite-derived Orthophoto and DSMs with a novel approach employing a model-driven workflow that generates building rectangular 3D geometry models. Secondly, we further enhanced our building reconstruction framework for dense urban areas and non-rectangular purposes, we implemented deep learning for unit-level segmentation and introduced a gradient-based circle reconstruction for circular buildings to develop a polygon composition technique for advanced building LoD2 reconstruction. Our third study utilizes high-spatiotemporal resolution PlanetScope satellite imagery for glacier tracking at 3D level in mid-latitude regions. Finally, we proposed a term as "Algal Behavior Function" to refine the quantification of chlorophyll-a concentrations from satellite imagery in water quality monitoring, addressing algae fluctuations and timing discrepancies between satellite observations and field measurements, thus enhancing the precision of underwater algae volume estimates. Overall, this dissertation demonstrates the extensive potential of satellite photogrammetry applications in addressing urban and environmental challenges. It further showcases innovative analytical methodologies that enhance the applicability of adapting stereo and multi-view very high-resolution satellite-derived 3D data. (See full abstract in the document)
Related papers
- UW-SDF: Exploiting Hybrid Geometric Priors for Neural SDF Reconstruction from Underwater Multi-view Monocular Images [63.32490897641344]
We propose a framework for reconstructing target objects from multi-view underwater images based on neural SDF.
We introduce hybrid geometric priors to optimize the reconstruction process, markedly enhancing the quality and efficiency of neural SDF reconstruction.
arXiv Detail & Related papers (2024-10-10T16:33:56Z) - GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision [49.839374549646884]
This paper presents GEOcc, a Geometric-Enhanced Occupancy network tailored for vision-only surround-view perception.
Our approach achieves State-Of-The-Art performance on the Occ3D-nuScenes dataset with the least image resolution needed and the most weightless image backbone.
arXiv Detail & Related papers (2024-05-17T07:31:20Z) - Reconstructing Satellites in 3D from Amateur Telescope Images [44.20773507571372]
This paper proposes a framework for the 3D reconstruction of satellites in low-Earth orbit, utilizing videos captured by small amateur telescopes.
The video data obtained from these telescopes differ significantly from data for standard 3D reconstruction tasks, characterized by intense motion blur, atmospheric turbulence, pervasive background light pollution, extended focal length and constrained observational perspectives.
We validate our approach using both synthetic datasets and actual observations of China's Space Station, showcasing its significant advantages over existing methods in reconstructing 3D space objects from ground-based observations.
arXiv Detail & Related papers (2024-04-29T03:13:09Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
We introduce GeoGS3D, a framework for reconstructing detailed 3D objects from single-view images.
We propose a novel metric, Gaussian Divergence Significance (GDS), to prune unnecessary operations during optimization.
Experiments demonstrate that GeoGS3D generates images with high consistency across views and reconstructs high-quality 3D objects.
arXiv Detail & Related papers (2024-03-15T12:24:36Z) - A Survey on 3D Gaussian Splatting [51.96747208581275]
3D Gaussian splatting (GS) has emerged as a transformative technique in the realm of explicit radiance field and computer graphics.
We provide the first systematic overview of the recent developments and critical contributions in the domain of 3D GS.
By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond.
arXiv Detail & Related papers (2024-01-08T13:42:59Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
We present StableDreamer, a methodology incorporating three advances.
First, we formalize the equivalence of the SDS generative prior and a simple supervised L2 reconstruction loss.
Second, our analysis shows that while image-space diffusion contributes to geometric precision, latent-space diffusion is crucial for vivid color rendition.
arXiv Detail & Related papers (2023-12-02T02:27:58Z) - Sat2Density: Faithful Density Learning from Satellite-Ground Image Pairs [32.4349978810128]
This paper aims to develop an accurate 3D geometry representation of satellite images using satellite-ground image pairs.
We draw inspiration from the density field representation used in volumetric neural rendering and propose a new approach, called Sat2Density.
Our method utilizes the properties of ground-view panoramas for the sky and non-sky regions to learn faithful density fields of 3D scenes in a geometric perspective.
arXiv Detail & Related papers (2023-03-26T10:15:33Z) - UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body
Decoupling 3D Model [58.70130563417079]
We introduce a new 3D human-body model with a series of decoupled parameters that could freely control the generation of the body.
Compared to the existing manually annotated DensePose-COCO dataset, the synthetic UltraPose has ultra dense image-to-surface correspondences without annotation cost and error.
arXiv Detail & Related papers (2021-10-28T16:24:55Z) - Ground material classification and for UAV-based photogrammetric 3D data
A 2D-3D Hybrid Approach [1.3359609092684614]
In recent years, photogrammetry has been widely used in many areas to create 3D virtual data representing the physical environment.
These cutting-edge technologies have caught the US Army and Navy's attention for the purpose of rapid 3D battlefield reconstruction, virtual training, and simulations.
arXiv Detail & Related papers (2021-09-24T22:29:26Z) - Cumulative Assessment for Urban 3D Modeling [0.8155575318208631]
Urban 3D modeling from satellite images requires accurate semantic segmentation to delineate urban features, multiple view stereo for 3D reconstruction of surface heights, and 3D model fitting to produce compact models with accurate surface slopes.
We present a cumulative assessment metric that succinctly captures error contributions from each of these components.
arXiv Detail & Related papers (2021-07-09T18:29:50Z) - Photometric Multi-View Mesh Refinement for High-Resolution Satellite
Images [24.245977127434212]
State-of-the-art reconstruction methods typically generate 2.5D elevation data.
We present an approach to recover full 3D surface meshes from multi-view satellite imagery.
arXiv Detail & Related papers (2020-05-10T20:37:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.