論文の概要: A Configurable Pythonic Data Center Model for Sustainable Cooling and ML Integration
- arxiv url: http://arxiv.org/abs/2404.12498v1
- Date: Thu, 18 Apr 2024 20:25:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 16:44:29.236309
- Title: A Configurable Pythonic Data Center Model for Sustainable Cooling and ML Integration
- Title(参考訳): 持続可能な冷却とML統合のためのPythonic Data Centerモデルの構成
- Authors: Avisek Naug, Antonio Guillen, Ricardo Luna Gutierrez, Vineet Gundecha, Sahand Ghorbanpour, Sajad Mousavi, Ashwin Ramesh Babu, Soumyendu Sarkar,
- Abstract要約: データセンター設計の極めて高速なプロトタイピングを可能にするPythonライブラリであるPyDCMを紹介した。
我々は、PyDCMの能力を実証し、データセンターをモデリングするためのEnergyPlusの既存の作業と比較する。
PyDCMは、サステナビリティを重視したデータセンタコントロールを示すスタンドアロンのGymnasium環境としても使用できる。
- 参考スコア(独自算出の注目度): 4.0196072781228285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There have been growing discussions on estimating and subsequently reducing the operational carbon footprint of enterprise data centers. The design and intelligent control for data centers have an important impact on data center carbon footprint. In this paper, we showcase PyDCM, a Python library that enables extremely fast prototyping of data center design and applies reinforcement learning-enabled control with the purpose of evaluating key sustainability metrics including carbon footprint, energy consumption, and observing temperature hotspots. We demonstrate these capabilities of PyDCM and compare them to existing works in EnergyPlus for modeling data centers. PyDCM can also be used as a standalone Gymnasium environment for demonstrating sustainability-focused data center control.
- Abstract(参考訳): 企業データセンターの運用炭素フットプリントの推定と削減に関する議論が続いている。
データセンターの設計とインテリジェントな制御は、データセンターのカーボンフットプリントに大きな影響を与える。
本稿では、データセンター設計の極めて高速なプロトタイピングを可能にするPythonライブラリであるPyDCMを紹介し、炭素フットプリント、エネルギー消費、温度ホットスポットの観測といった主要な持続可能性指標を評価することを目的として強化学習可能な制御を適用した。
我々は、PyDCMのこれらの能力を実証し、データセンターをモデリングするためのEnergyPlusの既存の作業と比較する。
PyDCMは、サステナビリティを重視したデータセンタコントロールを示すスタンドアロンのGymnasium環境としても使用できる。
関連論文リスト
- Hierarchical Multi-Agent Framework for Carbon-Efficient Liquid-Cooled Data Center Clusters [5.335496791443277]
本稿では,Reinforcement Learning (RL) に基づく階層型コントローラを提案するGreen-DCCについて紹介する。
本稿では,複数のデータセンターを同期的に最適化し,デジタル双生児を対象とし,炭素排出量とサステナビリティ指標に基づく様々なRL手法の性能比較を行う。
論文 参考訳(メタデータ) (2025-02-12T12:00:58Z) - SustainDC: Benchmarking for Sustainable Data Center Control [4.159959816797259]
データセンター(DC)のためのマルチエージェント強化学習(MARL)アルゴリズムをベンチマークするためのPython環境セットであるSustainDCを紹介する。
SustainDCは、ワークロードスケジューリング、冷却最適化、補助バッテリー管理などのカスタムDC構成とタスクをサポートする。
SustainDC上での各種MARLアルゴリズムの評価を行い, 各種DC設計, 位置, 気象条件, グリッドカーボン強度, 負荷負荷条件などを検討した。
論文 参考訳(メタデータ) (2024-08-14T22:43:52Z) - Sustainability of Data Center Digital Twins with Reinforcement Learning [2.4971633082970377]
機械学習(ML)は、計算能力の需要が増大し、データセンター(DC)が大きくなり、エネルギー消費が増加した。
この問題に対処し、二酸化炭素排出量を減らすために、ITサーバ、キャビネット、HVAC冷却、柔軟な負荷シフト、バッテリーエネルギー貯蔵といったDCコンポーネントの設計と制御が不可欠である。
DCRL-GreenはマルチエージェントのRL環境であり、MLコミュニティがデータセンターを設計し、DCの炭素フットプリント削減のためのRLコントローラを開発し、改良することを可能にする。
論文 参考訳(メタデータ) (2024-04-16T18:22:30Z) - PyDCM: Custom Data Center Models with Reinforcement Learning for Sustainability [2.6429542504022314]
PyDCMは、Pythonで実装されたカスタマイズ可能なデータセンターモデルである。
ベクトル化熱計算を用いることで、PyDCMのオーダーは現在のEnergy Plusのモデリング実装よりも桁違いに速い(30倍)。
論文 参考訳(メタデータ) (2023-10-05T21:24:54Z) - DC-Check: A Data-Centric AI checklist to guide the development of
reliable machine learning systems [81.21462458089142]
データ中心のAIは、信頼できるエンドツーエンドパイプラインを可能にする統一パラダイムとして登場しています。
データ中心の考慮事項を抽出する実行可能なチェックリストスタイルのフレームワークであるDC-Checkを提案する。
この開発におけるデータ中心のレンズは、システム開発に先立って思考力と透明性を促進することを目的としている。
論文 参考訳(メタデータ) (2022-11-09T17:32:09Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
我々は,ソフトウェアの炭素強度を測定するための枠組みを提供し,運転中の炭素排出量を測定することを提案する。
私たちは、Microsoft Azureクラウドコンピューティングプラットフォームにおける排出削減のための一連のアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-10T17:04:04Z) - Treehouse: A Case For Carbon-Aware Datacenter Software [4.7521372297013365]
デナードのスケーリングの終わりとムーアの法則の減速は、データセンターのエネルギー利用を持続不可能な経路に押し上げた。
我々は、ソフトウェア中心のアプローチにより、データセンターコンピューティングの炭素強度を大幅に削減できると主張している。
論文 参考訳(メタデータ) (2022-01-06T16:00:53Z) - Power Modeling for Effective Datacenter Planning and Compute Management [53.41102502425513]
我々は,すべてのハードウェア構成とワークロードに適用可能な,正確でシンプルで解釈可能な統計パワーモデルの設計と検証の2つのクラスについて論じる。
提案された統計的モデリング手法は, 単純かつスケーラブルでありながら, 4つの特徴のみを用いて, 95% 以上の多様な配電ユニット (2000 以上) に対して, 5% 未満の絶対パーセンテージエラー (MAPE) で電力を予測できることを実証した。
論文 参考訳(メタデータ) (2021-03-22T21:22:51Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
本稿では,分散学習政策の環境フットプリントに影響を与える要因を概説し,分析する。
バニラとコンセンサスによって駆動される分散FLポリシーの両方をモデル化する。
その結果、flは低ビット/ジュール効率を特徴とするワイヤレスシステムにおいて、顕著なエンドツーエンドの省エネ(30%-40%)が可能となった。
論文 参考訳(メタデータ) (2021-03-18T16:04:42Z) - PyHealth: A Python Library for Health Predictive Models [53.848478115284195]
PyHealthは、医療データ上で様々な予測モデルを開発するためのオープンソースのPythonツールボックスである。
データ前処理モジュールにより、複雑なヘルスケアデータセットを機械学習フレンドリーなフォーマットに変換できます。
予測モデリングモジュールは、確立されたアンサンブルツリーとディープニューラルネットワークベースのアプローチを含む30以上の機械学習モデルを提供します。
論文 参考訳(メタデータ) (2021-01-11T22:02:08Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
我々は、リアルタイムエネルギー消費と二酸化炭素排出量を追跡するための枠組みを導入する。
エネルギー効率のよい強化学習アルゴリズムのためのリーダーボードを作成します。
炭素排出量削減とエネルギー消費削減のための戦略を提案する。
論文 参考訳(メタデータ) (2020-01-31T05:12:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。