論文の概要: Multi-View Subgraph Neural Networks: Self-Supervised Learning with Scarce Labeled Data
- arxiv url: http://arxiv.org/abs/2404.12569v1
- Date: Fri, 19 Apr 2024 01:36:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 16:34:43.274811
- Title: Multi-View Subgraph Neural Networks: Self-Supervised Learning with Scarce Labeled Data
- Title(参考訳): マルチビューサブグラフニューラルネットワーク:スカースラベルデータによる自己教師付き学習
- Authors: Zhenzhong Wang, Qingyuan Zeng, Wanyu Lin, Min Jiang, Kay Chen Tan,
- Abstract要約: 長距離依存関係を扱うためのマルチビューサブグラフニューラルネットワーク(Muse)と呼ばれる新しい学習フレームワークを提案する。
部分グラフの2つのビューを融合させることで、学習された表現はグラフの位相的性質を広く保存することができる。
実験の結果,Museは限定ラベル付きデータを用いたノード分類タスクにおいて,代替手法よりも優れていた。
- 参考スコア(独自算出の注目度): 24.628203785306233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While graph neural networks (GNNs) have become the de-facto standard for graph-based node classification, they impose a strong assumption on the availability of sufficient labeled samples. This assumption restricts the classification performance of prevailing GNNs on many real-world applications suffering from low-data regimes. Specifically, features extracted from scarce labeled nodes could not provide sufficient supervision for the unlabeled samples, leading to severe over-fitting. In this work, we point out that leveraging subgraphs to capture long-range dependencies can augment the representation of a node with homophily properties, thus alleviating the low-data regime. However, prior works leveraging subgraphs fail to capture the long-range dependencies among nodes. To this end, we present a novel self-supervised learning framework, called multi-view subgraph neural networks (Muse), for handling long-range dependencies. In particular, we propose an information theory-based identification mechanism to identify two types of subgraphs from the views of input space and latent space, respectively. The former is to capture the local structure of the graph, while the latter captures the long-range dependencies among nodes. By fusing these two views of subgraphs, the learned representations can preserve the topological properties of the graph at large, including the local structure and long-range dependencies, thus maximizing their expressiveness for downstream node classification tasks. Experimental results show that Muse outperforms the alternative methods on node classification tasks with limited labeled data.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)はグラフベースのノード分類のデファクトスタンダードとなっているが、十分なラベル付きサンプルが利用可能であることを強く前提としている。
この仮定は、低データ構造に苦しむ多くの実世界のアプリケーションにおいて、一般的なGNNの分類性能を制限する。
具体的には、ラベル付けされていないノードから抽出された特徴は、ラベル付けされていないサンプルを十分に監視することができず、過度なオーバーフィッティングに繋がった。
本研究では,長期依存を捉えるためにサブグラフを活用することで,ノードの表現をホモフィリーな特性で強化し,低データ構造を緩和することができることを指摘する。
しかしながら、サブグラフを利用する以前の作業では、ノード間の長距離依存関係をキャプチャできない。
この目的のために,多視点サブグラフニューラルネットワーク(Muse)と呼ばれる,長距離依存処理のための新しい自己教師型学習フレームワークを提案する。
特に,入力空間と潜時空間の視点から2種類のサブグラフを識別する情報理論に基づく識別機構を提案する。
前者はグラフの局所構造をキャプチャし、後者はノード間の長距離依存関係をキャプチャする。
これら2つの部分グラフのビューを融合することにより、学習された表現は、局所構造や長距離依存を含むグラフの位相特性を広く保存し、下流ノード分類タスクに対する表現性を最大化することができる。
実験の結果,Museは限定ラベル付きデータを用いたノード分類タスクにおいて,代替手法よりも優れていた。
関連論文リスト
- BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Search to Capture Long-range Dependency with Stacking GNNs for Graph
Classification [41.84399177525008]
浅いGNNは、より深いGNNに直面しているよく知られたオーバースムースな問題のため、より一般的である。
LRGNN(Long-Range Graph Neural Networks)と呼ばれるニューラルアーキテクチャサーチ(NAS)による新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-02-17T03:40:17Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
暗黙グラフニューラルネットワーク(GNN)は、基礎となるグラフの長距離依存性をキャプチャするために提案されている。
暗黙的GNNの2つの弱点は、長距離依存を捉えるための限られた有効範囲による制約付き表現性と、複数の解像度でグラフ上のマルチスケール情報をキャプチャする能力の欠如である。
グラフ上のマルチスケール構造をモデル化できる暗黙の層(MGNNI)を持つマルチスケールグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-15T18:18:55Z) - Learning with Few Labeled Nodes via Augmented Graph Self-Training [36.97506256446519]
GST(Augmented Graph Self-Training)フレームワークは、分離されたGSTバックボーンの上に2つの新しい(構造的および意味的な)拡張モジュールで構築されている。
この新たなフレームワークが,ラベル付きノードを極端に限定した効率的なグラフ予測モデルを学習できるかどうかを検討する。
論文 参考訳(メタデータ) (2022-08-26T03:36:01Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Hierarchical graph neural nets can capture long-range interactions [8.067880298298185]
与えられたグラフの多重解像度表現を利用する階層的メッセージパッシングモデルについて検討する。
これにより、ローカル情報を失うことなく、大きな受容領域にまたがる特徴の学習が容易になる。
階層グラフネット(HGNet)を導入し、任意の2つの接続ノードに対して、最大対数長のメッセージパスパスが存在することを保証します。
論文 参考訳(メタデータ) (2021-07-15T16:24:22Z) - Learning Graph Neural Networks with Positive and Unlabeled Nodes [34.903471348798725]
グラフニューラルネットワーク(GNN)は、グラフのノード分類など、トランスダクティブな学習タスクのための重要なツールです。
ほとんどのGNNモデルは、各ラウンドで短い距離から情報を集約し、グラフで長距離関係をキャプチャできません。
本論文では,これらの制限を克服するために,新しいグラフニューラルネットワークフレームワーク,LSDAN(Long-Short distance aggregation Network)を提案する。
論文 参考訳(メタデータ) (2021-03-08T11:43:37Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
本稿では,動的グラフの異常エッジを検出するために,エンドツーエンドの時間構造グラフニューラルネットワークモデルを提案する。
特に,まずターゲットエッジを中心にした$h$ホップ囲むサブグラフを抽出し,各ノードの役割を識別するノードラベル機能を提案する。
抽出した特徴に基づき,GRU(Gated Recurrent Unit)を用いて,異常検出のための時間的情報を取得する。
論文 参考訳(メタデータ) (2020-05-15T09:17:08Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
半教師付きノード分類の性能を高めるためのグラフ推論学習フレームワークを提案する。
推論過程の学習には,トレーニングノードから検証ノードへの構造関係のメタ最適化を導入する。
4つのベンチマークデータセットの総合的な評価は、最先端の手法と比較して提案したGILの優位性を示している。
論文 参考訳(メタデータ) (2020-01-17T02:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。