論文の概要: Hierarchical graph neural nets can capture long-range interactions
- arxiv url: http://arxiv.org/abs/2107.07432v1
- Date: Thu, 15 Jul 2021 16:24:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-16 14:08:29.212362
- Title: Hierarchical graph neural nets can capture long-range interactions
- Title(参考訳): 階層グラフニューラルネットは長距離相互作用を捉えることができる
- Authors: Ladislav Ramp\'a\v{s}ek, Guy Wolf
- Abstract要約: 与えられたグラフの多重解像度表現を利用する階層的メッセージパッシングモデルについて検討する。
これにより、ローカル情報を失うことなく、大きな受容領域にまたがる特徴の学習が容易になる。
階層グラフネット(HGNet)を導入し、任意の2つの接続ノードに対して、最大対数長のメッセージパスパスが存在することを保証します。
- 参考スコア(独自算出の注目度): 8.067880298298185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) based on message passing between neighboring
nodes are known to be insufficient for capturing long-range interactions in
graphs. In this project we study hierarchical message passing models that
leverage a multi-resolution representation of a given graph. This facilitates
learning of features that span large receptive fields without loss of local
information, an aspect not studied in preceding work on hierarchical GNNs. We
introduce Hierarchical Graph Net (HGNet), which for any two connected nodes
guarantees existence of message-passing paths of at most logarithmic length
w.r.t. the input graph size. Yet, under mild assumptions, its internal
hierarchy maintains asymptotic size equivalent to that of the input graph. We
observe that our HGNet outperforms conventional stacking of GCN layers
particularly in molecular property prediction benchmarks. Finally, we propose
two benchmarking tasks designed to elucidate capability of GNNs to leverage
long-range interactions in graphs.
- Abstract(参考訳): 近隣ノード間のメッセージパッシングに基づくグラフニューラルネットワーク(GNN)は、グラフ内の長距離インタラクションをキャプチャするには不十分であることが知られている。
本研究では,与えられたグラフのマルチレゾリューション表現を利用する階層的メッセージパッシングモデルについて検討する。
これにより、局所的な情報を失うことなく、大きな受容領域にまたがる特徴の学習が容易になる。
階層グラフネット(HGNet)を導入し、任意の2つの接続ノードに対して、最大対数長 w.r.t のメッセージパスが存在することを保証します。
入力グラフのサイズです
しかし、穏やかな仮定の下では、内部階層は入力グラフと同等の漸近的な大きさを維持する。
HGNetは特に分子特性予測ベンチマークにおいて,従来のGCN層の積み重ねよりも優れていた。
最後に,グラフにおける長距離インタラクションを活用するgnnの能力を明らかにするために設計された2つのベンチマークタスクを提案する。
関連論文リスト
- Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) はノード分類タスク用に設計された非神経モデルである。
GNNにアクセスできる情報のごく一部しか使わない従来のグラフアルゴリズムとは異なり、提案モデルではノードの特徴とエンティティ間の関係を同時に活用する。
論文 参考訳(メタデータ) (2024-11-19T08:32:14Z) - Search to Capture Long-range Dependency with Stacking GNNs for Graph
Classification [41.84399177525008]
浅いGNNは、より深いGNNに直面しているよく知られたオーバースムースな問題のため、より一般的である。
LRGNN(Long-Range Graph Neural Networks)と呼ばれるニューラルアーキテクチャサーチ(NAS)による新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-02-17T03:40:17Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
暗黙グラフニューラルネットワーク(GNN)は、基礎となるグラフの長距離依存性をキャプチャするために提案されている。
暗黙的GNNの2つの弱点は、長距離依存を捉えるための限られた有効範囲による制約付き表現性と、複数の解像度でグラフ上のマルチスケール情報をキャプチャする能力の欠如である。
グラフ上のマルチスケール構造をモデル化できる暗黙の層(MGNNI)を持つマルチスケールグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-15T18:18:55Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
GNNを効率的に検索するためのARGNP(Automatic Relation-Aware Graph Network Proliferation)を提案する。
これらの操作は階層的なノード/リレーショナル情報を抽出し、グラフ上のメッセージパッシングのための異方的ガイダンスを提供する。
4つのグラフ学習タスクのための6つのデータセットの実験により、我々の手法によって生成されたGNNは、現在最先端の手作りおよび検索に基づくGNNよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-05-31T10:38:04Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Missing Data Estimation in Temporal Multilayer Position-aware Graph
Neural Network (TMP-GNN) [5.936402320555635]
TMP-GNN(Temporal Multilayered Position-aware Graph Neural Network)は,動的グラフに対するノード埋め込み手法である。
時間的多層グラフの2つの異なる表現に対するTMP-GNNの性能評価を行った。
我々は、TMP-GNNをディープラーニングフレームワークに組み込んで、欠落したデータを推定し、その性能を対応する有能なGNNと比較する。
論文 参考訳(メタデータ) (2021-08-07T08:32:40Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
本稿では,新しい階層型メッセージパッシンググラフニューラルネットワークフレームワークを提案する。
鍵となるアイデアは、フラットグラフ内のすべてのノードをマルチレベルなスーパーグラフに再編成する階層構造を生成することである。
階層型コミュニティ対応グラフニューラルネットワーク(HC-GNN)と呼ばれる,このフレームワークを実装した最初のモデルを提案する。
論文 参考訳(メタデータ) (2020-09-08T13:11:07Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Gated Graph Recurrent Neural Networks [176.3960927323358]
グラフ処理の一般的な学習フレームワークとしてグラフリカレントニューラルネットワーク(GRNN)を導入する。
勾配の消失問題に対処するため,時間,ノード,エッジゲートの3つの異なるゲーティング機構でGRNNを前進させた。
数値的な結果は、GRNNがGNNやRNNよりも優れており、グラフプロセスの時間構造とグラフ構造の両方を考慮することが重要であることを示している。
論文 参考訳(メタデータ) (2020-02-03T22:35:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。