論文の概要: End-to-End Verifiable Decentralized Federated Learning
- arxiv url: http://arxiv.org/abs/2404.12623v1
- Date: Fri, 19 Apr 2024 04:43:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-04-22 16:15:12.871311
- Title: End-to-End Verifiable Decentralized Federated Learning
- Title(参考訳): エンドツーエンドで検証可能な分散型フェデレーションラーニング
- Authors: Chaehyeon Lee, Jonathan Heiss, Stefan Tai, James Won-Ki Hong,
- Abstract要約: ブロックチェーンとゼロ知識証明(ZKP)を組み合わせた検証可能な分散連邦学習(FL)システム
本稿では、データのエンドツーエンドの整合性と信頼性を検証し、データソースに対する検証性を拡張するための検証可能な分散FLシステムを提案する。
- 参考スコア(独自算出の注目度): 1.374949083138427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Verifiable decentralized federated learning (FL) systems combining blockchains and zero-knowledge proofs (ZKP) make the computational integrity of local learning and global aggregation verifiable across workers. However, they are not end-to-end: data can still be corrupted prior to the learning. In this paper, we propose a verifiable decentralized FL system for end-to-end integrity and authenticity of data and computation extending verifiability to the data source. Addressing an inherent conflict of confidentiality and transparency, we introduce a two-step proving and verification (2PV) method that we apply to central system procedures: a registration workflow that enables non-disclosing verification of device certificates and a learning workflow that extends existing blockchain and ZKP-based FL systems through non-disclosing data authenticity proofs. Our evaluation on a prototypical implementation demonstrates the technical feasibility with only marginal overheads to state-of-the-art solutions.
- Abstract(参考訳): ブロックチェーンとゼロ知識証明(ZKP)を組み合わせた検証可能な分散型フェデレーションラーニング(FL)システムは、ローカルラーニングとグローバルアグリゲーションの計算的整合性を労働者間で検証できるようにする。
しかし、それらはエンドツーエンドではない。学習前にデータはいまだに破損する可能性がある。
本稿では,データのエンドツーエンドの整合性と信頼性を検証可能な分散FLシステムを提案する。
デバイス証明書の非開示検証を可能にする登録ワークフローと、既存のブロックチェーンとZKPベースのFLシステムを非開示データ認証証明を通じて拡張する学習ワークフローです。
プロトタイプ実装に関する我々の評価は、最先端のソリューションに限界オーバーヘッドしか持たない技術的実現可能性を示している。
関連論文リスト
- Trusted Compute Units: A Framework for Chained Verifiable Computations [41.94295877935867]
本稿では,異種技術間のコンポーザブルで相互運用可能な計算を可能にする統合フレームワークであるTrusted Compute Unit(TCU)を紹介する。
オンチェーンの確認遅延やガス料金を発生させることなく、セキュアなオフチェーンインタラクションを可能にすることで、TCUはシステムパフォーマンスとスケーラビリティを大幅に改善する。
論文 参考訳(メタデータ) (2025-04-22T09:01:55Z) - Zero-Knowledge Proof-Based Consensus for Blockchain-Secured Federated Learning [22.85593588340569]
フェデレートラーニング(FL)は、複数の参加者が共同で機械学習モデルをトレーニングすることを可能にする。
ほとんどのブロックチェーンでセキュアなFLシステムは、従来のコンセンサス機構に依存している。
本稿では,ZKPoT(Zero-Knowledge Proof of Training)の新たなコンセンサス機構を提案する。
論文 参考訳(メタデータ) (2025-03-17T15:13:10Z) - Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
産業用 4.0 システムでは、リソース制約のあるエッジデバイスが頻繁にデータ通信を行う。
本稿では,デジタルツイン (DT) とフェデレーション付きデジタルツイン (FL) 方式を提案する。
提案手法の有効性を数値解析により検証した。
論文 参考訳(メタデータ) (2024-11-04T17:48:02Z) - Scalable Zero-Knowledge Proofs for Verifying Cryptographic Hashing in Blockchain Applications [16.72979347045808]
ゼロ知識証明(ZKP)は、現代のブロックチェーンシステムのスケーラビリティ問題に対処するための、有望なソリューションとして登場した。
本研究では,暗号ハッシュの計算完全性を保証するため,ZKPの生成と検証を行う手法を提案する。
論文 参考訳(メタデータ) (2024-07-03T21:19:01Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-28T07:08:26Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
フェデレートアンラーニング(Federated Unlearning)は、分散クライアントのデータオーナシップを保護するための、有望なパラダイムである。
既存の作業では、分散クライアントからの履歴モデルパラメータを保持するために、中央サーバが必要である。
本稿では,ブロックチェーンによる信頼性の高いフェデレーションアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T07:04:48Z) - zkDFL: An efficient and privacy-preserving decentralized federated
learning with zero-knowledge proof [3.517233208696287]
フェデレートラーニング(FL)は、様々な分野の研究やビジネスで広く採用されている。
従来の中央集権的なFLシステムは深刻な問題に悩まされている。
ゼロ知識証明(ZKP)に基づくアグリゲータ(zkDFL)を提案する。
論文 参考訳(メタデータ) (2023-12-01T17:00:30Z) - Enhancing Scalability and Reliability in Semi-Decentralized Federated
Learning With Blockchain: Trust Penalization and Asynchronous Functionality [0.0]
本論文は, 信頼金化機構を通じて参加ノードの信頼性を高めることに焦点を当てている。
提案システムは、データのプライバシーを損なうことなく、協調的な機械学習のための公正でセキュアで透明な環境を構築することを目的としている。
論文 参考訳(メタデータ) (2023-10-30T06:05:50Z) - Defending Against Poisoning Attacks in Federated Learning with
Blockchain [12.840821573271999]
ブロックチェーンと分散台帳技術に基づくセキュアで信頼性の高いフェデレーション学習システムを提案する。
本システムでは,オンチェーン型スマートコントラクトを利用したピアツーピア投票機構と報酬アンドスラッシュ機構を組み込んで,悪意ある行動の検出と検出を行う。
論文 参考訳(メタデータ) (2023-07-02T11:23:33Z) - Blockchain-based Monitoring for Poison Attack Detection in Decentralized
Federated Learning [2.322461721824713]
Federated Learning(FL)は、ローカルデータセットへのアクセス権の観点から、プライバシの問題に対処する機械学習技術である。
分散FLでは、労働者が相互に協力してグローバルモデルを訓練することにより、チーフは学習プロセスから排除される。
本研究では, 汚染攻撃に対する防御において, 監視フェーズを検出フェーズから切り離す手法を提案する。
論文 参考訳(メタデータ) (2022-09-30T19:07:29Z) - VeriFi: Towards Verifiable Federated Unlearning [59.169431326438676]
フェデレートラーニング(FL)は、参加者がプライベートデータを共有せずに強力なモデルを共同でトレーニングする、協調学習パラダイムである。
参加者を去るには、グローバルモデルからプライベートデータを削除するよう要求する権利がある。
フェデレートされた未学習と検証を統合した統合フレームワークであるVeriFiを提案する。
論文 参考訳(メタデータ) (2022-05-25T12:20:02Z) - A Principled Approach to Data Valuation for Federated Learning [73.19984041333599]
フェデレートラーニング(FL)は、分散データソース上で機械学習(ML)モデルをトレーニングする一般的なテクニックである。
Shapley value (SV) はデータ値の概念として多くのデシラタを満たすユニークなペイオフスキームを定義する。
本稿では,FL に対応する SV の変種を提案する。
論文 参考訳(メタデータ) (2020-09-14T04:37:54Z) - Byzantine-resilient Decentralized Stochastic Gradient Descent [85.15773446094576]
分散学習システムのビザンチンレジリエンスに関する詳細な研究について述べる。
ビザンチンフォールトトレランスを用いた分散学習を支援する新しいアルゴリズムUBARを提案する。
論文 参考訳(メタデータ) (2020-02-20T05:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。