論文の概要: Multi-Objective Fine-Tuning for Enhanced Program Repair with LLMs
- arxiv url: http://arxiv.org/abs/2404.12636v1
- Date: Fri, 19 Apr 2024 05:36:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 16:05:28.731984
- Title: Multi-Objective Fine-Tuning for Enhanced Program Repair with LLMs
- Title(参考訳): LLMによるプログラム修復のための多目的ファインチューニング
- Authors: Boyang Yang, Haoye Tian, Jiadong Ren, Hongyu Zhang, Jacques Klein, Tegawendé F. Bissyandé, Claire Le Goues, Shunfu Jin,
- Abstract要約: 大規模言語モデル(LLM)は、幅広い下流タスクにおいて顕著な機能を示した。
プログラム修復のためのLLMファインチューニングの学習焦点に関する新しい視点を提案する。
我々はMORepairを、サイズやアーキテクチャの異なる4つのオープンソースLCMの微調整に応用する。
- 参考スコア(独自算出の注目度): 16.890411067079885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated remarkable capabilities on a broad spectrum of downstream tasks. Within the realm of software engineering, specialized tasks on code, such as program repair, present unique challenges, necessitating fine-tuning to unlock state-of-the-art performance. Fine-tuning approaches proposed in the literature for LLMs on program repair tasks are however generally overlooking the need to reason about the logic behind code changes, beyond syntactic patterns in the data. High-performing fine-tuning experiments also usually come at very high computational costs. With MORepair, we propose a novel perspective on the learning focus of LLM fine-tuning for program repair: we not only adapt the LLM parameters to the syntactic nuances of the task of code transformation (objective 1), but we also specifically fine-tune the LLM with respect to the logical reason behind the code change in the training data (objective 2). Such a multi-objective fine-tuning will instruct LLMs to generate high-quality patches. We apply MORepair to fine-tune four open-source LLMs with different sizes and architectures. Experimental results on C++ and Java repair benchmarks show that the implemented fine-tuning effectively boosts LLM repair performance by 7.6% to 10% in Top-10 repair suggestions. We further show that our fine-tuning strategy yields superior performance compared to the incumbent state-of-the-art in fine-tuned models for program repair, Fine-tune-CoT and RepairLLaMA.
- Abstract(参考訳): 大規模言語モデル(LLM)は、幅広い下流タスクにおいて顕著な機能を示した。
ソフトウェアエンジニアリングの領域内では、プログラムの修復、ユニークな課題の提示、最先端のパフォーマンスのアンロックのための微調整が必要である。
LLMのプログラム修復タスクに関する文献で提案されている微調整アプローチは、一般的に、データの構文パターンを超えて、コード変更の背後にあるロジックを推論する必要性を見落としている。
高性能な微調整実験も、通常非常に高い計算コストで行われる。
MORepairでは、プログラム修復のためのLLM微調整の学習焦点に関する新たな視点を提案し、LLMパラメータをコード変換のタスクの構文的ニュアンス(オブジェクト1)に適応させるだけでなく、トレーニングデータにおけるコード変更の背後にある論理的理由(オブジェクト2)に関して、特にLLMを微調整する。
このような多目的微調整は、LCMに高品質なパッチを生成するよう指示する。
我々はMORepairを、サイズやアーキテクチャの異なる4つのオープンソースLCMの微調整に応用する。
C++とJavaの修復ベンチマークの実験結果によると、実装された微調整により、トップ10の修理提案でLLMの修理性能が7.6%から10%向上した。
さらに, プログラム修復, ファインチューンCoT, 補修LLaMAのファインチューンモデルにおいて, 既存の最先端モデルに比べて優れた性能を示すことを示す。
関連論文リスト
- Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - Rethinking VLMs and LLMs for Image Classification [6.550471260627169]
大きな言語モデル(LLM)は、新しい機能を実現するために、Visual Language Models(VLM)と統合されつつある。
オブジェクト認識やシーン認識では,LLMを使わないVLMの方が,VLMよりも優れた性能が得られることを示す。
本稿では,視覚的タスクをタスクに適したモデルに効率的にルーティングする,比較的小さなLCMを含む軽量な修正法を提案する。
論文 参考訳(メタデータ) (2024-10-03T23:40:21Z) - RePair: Automated Program Repair with Process-based Feedback [28.017321930042694]
本稿では,プロセスの監督とフィードバックによって,小規模言語モデル(LM)が優れたパフォーマンスを実現する方法を示す。
我々は、批評家として機能する報酬モデルを開発し、微調整されたLMの行動に対するフィードバックを提供する。
その結果, プロセスベースでは, より大きな結果に基づく生成方法よりも, クローズドソースの大規模LMの性能にほぼ匹敵する結果が得られた。
論文 参考訳(メタデータ) (2024-08-21T02:53:23Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - CREF: An LLM-based Conversational Software Repair Framework for Programming Tutors [8.415004837059863]
既存の修復ベンチマークがLSMのトレーニングデータに影響を与え、データ漏洩を引き起こす可能性があることを認識することが重要である。
本研究は,TutorCode上の12LLMの補修性能,補修精度(TOP-5およびAVG-5)およびパッチ精度(RPSR)を評価する。
LLMの会話能力と強化情報の利点をフル活用するために,人間の教師を支援する対話型半自動修復フレームワークCREFを導入する。
論文 参考訳(メタデータ) (2024-06-20T03:36:34Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - Aligning LLMs for FL-free Program Repair [14.935596175148586]
本稿では,大規模言語モデル (LLM) をプログラム修復に適用するための新しいアプローチについて検討する。
我々の中核的な洞察は、LLMのAPR能力は、単にトレーニング目標に出力を合わせるだけで大幅に改善できるということです。
この知見に基づいて、我々はAPRの直接的なプロンプトフレームワークであるD4Cを設計した。
論文 参考訳(メタデータ) (2024-04-13T02:36:40Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
コードの品質を調査した結果,より構造化され,読みやすくなれば,コード生成性能が向上することがわかった。
私たちは、これらの原則を使って既存のプログラムを変換する、新しいデータクリーニングパイプラインを構築します。
提案手法を2つのアルゴリズムコード生成ベンチマークで評価した結果,微調整のCodeLLaMa-7Bでは,元のデータセットの微調整に比べて最大30%性能が向上していることがわかった。
論文 参考訳(メタデータ) (2023-11-25T02:45:50Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。