論文の概要: A Clean-graph Backdoor Attack against Graph Convolutional Networks with Poisoned Label Only
- arxiv url: http://arxiv.org/abs/2404.12704v1
- Date: Fri, 19 Apr 2024 08:21:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 15:45:58.778441
- Title: A Clean-graph Backdoor Attack against Graph Convolutional Networks with Poisoned Label Only
- Title(参考訳): ラベルを付与したグラフ畳み込みネットワークに対するクリーングラフバックドアアタック
- Authors: Jiazhu Dai, Haoyu Sun,
- Abstract要約: 本稿では,ノード分類タスクにおけるGCN(CBAG)に対するクリーングラフバックドア攻撃を提案する。
トレーニングラベルを汚染することにより、隠れたバックドアがGCNsモデルに注入される。
実験の結果,クリーングラフバックドアは99%の攻撃成功率が得られることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Convolutional Networks (GCNs) have shown excellent performance in dealing with various graph structures such as node classification, graph classification and other tasks. However,recent studies have shown that GCNs are vulnerable to a novel threat known as backdoor attacks. However, all existing backdoor attacks in the graph domain require modifying the training samples to accomplish the backdoor injection, which may not be practical in many realistic scenarios where adversaries have no access to modify the training samples and may leads to the backdoor attack being detected easily. In order to explore the backdoor vulnerability of GCNs and create a more practical and stealthy backdoor attack method, this paper proposes a clean-graph backdoor attack against GCNs (CBAG) in the node classification task,which only poisons the training labels without any modification to the training samples, revealing that GCNs have this security vulnerability. Specifically, CBAG designs a new trigger exploration method to find important feature dimensions as the trigger patterns to improve the attack performance. By poisoning the training labels, a hidden backdoor is injected into the GCNs model. Experimental results show that our clean graph backdoor can achieve 99% attack success rate while maintaining the functionality of the GCNs model on benign samples.
- Abstract(参考訳): グラフ畳み込みネットワーク(GCN)は、ノード分類、グラフ分類、その他のタスクなど、さまざまなグラフ構造を扱う上で優れた性能を示している。
しかし近年の研究では、GCNはバックドア攻撃と呼ばれる新たな脅威に弱いことが示されている。
しかし、グラフ領域における既存のすべてのバックドア攻撃は、バックドアインジェクションを達成するためにトレーニングサンプルを変更する必要があるが、多くの現実的なシナリオでは、敵がトレーニングサンプルを変更できないため、バックドアアタックが容易に検出される可能性がある。
本稿では,GCNのバックドア脆弱性を探究し,より実用的でステルス性の高いバックドア攻撃手法を提案する。
具体的には、CBAGは、攻撃性能を改善するためのトリガーパターンとして重要な特徴次元を見つけるために、新たなトリガー探索法を設計する。
トレーニングラベルを汚染することにより、隠れたバックドアがGCNsモデルに注入される。
実験結果から,我々のクリーングラフバックドアは,GCNsモデルの機能を維持しつつ,99%の攻撃成功率を達成できることがわかった。
関連論文リスト
- DMGNN: Detecting and Mitigating Backdoor Attacks in Graph Neural Networks [30.766013737094532]
我々は,DMGNNを,アウト・オブ・ディストリビューション(OOD)およびイン・ディストリビューション(ID)グラフバックドア攻撃に対して提案する。
DMGNNは、偽説明に基づいてラベル遷移を予測することによって、隠されたIDとOODトリガを容易に識別できる。
DMGNNは最新技術(SOTA)防衛法をはるかに上回り、モデル性能のほとんど無視できる劣化を伴って攻撃成功率を5%に低下させる。
論文 参考訳(メタデータ) (2024-10-18T01:08:03Z) - Robustness-Inspired Defense Against Backdoor Attacks on Graph Neural Networks [30.82433380830665]
グラフニューラルネットワーク(GNN)は,ノード分類やグラフ分類といったタスクにおいて,有望な結果を達成している。
最近の研究で、GNNはバックドア攻撃に弱いことが判明し、実際の採用に重大な脅威をもたらしている。
本研究では,裏口検出にランダムなエッジドロップを用いることにより,汚染ノードとクリーンノードを効率的に識別できることを理論的に示す。
論文 参考訳(メタデータ) (2024-06-14T08:46:26Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - A semantic backdoor attack against Graph Convolutional Networks [0.0]
セマンティックバックドアアタックはディープニューラルネットワーク(DNN)に対する新しいタイプのバックドアアタックである
グラフ畳み込みネットワーク(GCN)に対するセマンティックバックドア攻撃を提案し,GCNにおけるこの脆弱性の存在を明らかにする。
論文 参考訳(メタデータ) (2023-02-28T07:11:55Z) - Unnoticeable Backdoor Attacks on Graph Neural Networks [29.941951380348435]
特に、バックドアアタックは、トレーニンググラフ内の一連のノードにトリガーとターゲットクラスラベルをアタッチすることで、グラフを毒する。
本稿では,攻撃予算が制限されたグラフバックドア攻撃の新たな問題について検討する。
論文 参考訳(メタデータ) (2023-02-11T01:50:58Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
我々は,タスク特性に基づいて,無目標で毒のみのバックドア攻撃を設計する。
攻撃によって、バックドアがターゲットモデルに埋め込まれると、トリガーパターンでスタンプされたオブジェクトの検出を失う可能性があることを示す。
論文 参考訳(メタデータ) (2022-11-02T17:05:45Z) - BATT: Backdoor Attack with Transformation-based Triggers [72.61840273364311]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアの敵は、敵が特定したトリガーパターンによって活性化される隠れたバックドアを注入する。
最近の研究によると、既存の攻撃のほとんどは現実世界で失敗した。
論文 参考訳(メタデータ) (2022-11-02T16:03:43Z) - Defending Against Backdoor Attack on Graph Nerual Network by
Explainability [7.147386524788604]
GNNにおける最初のバックドア検出・防御手法を提案する。
グラフデータでは、現在のバックドアアタックは、トリガーを注入するためにグラフ構造を操作することに焦点を当てている。
その結果,いくつかの説明的評価指標では,良性サンプルと悪質サンプルとの間に明らかな違いがあることが判明した。
論文 参考訳(メタデータ) (2022-09-07T03:19:29Z) - Check Your Other Door! Establishing Backdoor Attacks in the Frequency
Domain [80.24811082454367]
検出不能で強力なバックドア攻撃を確立するために周波数領域を利用する利点を示す。
また、周波数ベースのバックドア攻撃を成功させる2つの防御方法と、攻撃者がそれらを回避できる可能性を示す。
論文 参考訳(メタデータ) (2021-09-12T12:44:52Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
Emphbackdoor攻撃は、深層ニューラルネットワーク(DNN)に隠れたバックドアを埋め込み、トレーニングデータに毒を盛ることを目的としている。
我々は,対象ラベルを画像レベルではなくオブジェクトレベルから扱う,新たな攻撃パラダイムであるemphfine-fine-grained attackを提案する。
実験により、提案手法はわずかなトレーニングデータだけを毒殺することでセマンティックセグメンテーションモデルを攻撃することに成功した。
論文 参考訳(メタデータ) (2021-03-06T05:50:29Z) - Backdoor Attacks to Graph Neural Networks [73.56867080030091]
グラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃を提案する。
我々のバックドア攻撃では、GNNは、事前に定義されたサブグラフがテストグラフに注入されると、テストグラフに対するアタッカー・チョーセンターゲットラベルを予測する。
実験の結果,我々のバックドア攻撃はクリーンなテストグラフに対するGNNの予測精度に小さな影響を与えていることがわかった。
論文 参考訳(メタデータ) (2020-06-19T14:51:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。