uTRAND: Unsupervised Anomaly Detection in Traffic Trajectories
- URL: http://arxiv.org/abs/2404.12712v1
- Date: Fri, 19 Apr 2024 08:46:33 GMT
- Title: uTRAND: Unsupervised Anomaly Detection in Traffic Trajectories
- Authors: Giacomo D'Amicantonio, Egor Bondarau, Peter H. N. de With,
- Abstract summary: We present a framework called uTRAND, that shifts the problem of anomalous trajectory prediction from the pixel space to a semantic-topological domain.
We show that uTRAND outperforms other state-of-the-art approaches on a dataset of anomalous trajectories collected in a real-world setting.
- Score: 5.6328191854587395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning-based approaches have achieved significant improvements on public video anomaly datasets, but often do not perform well in real-world applications. This paper addresses two issues: the lack of labeled data and the difficulty of explaining the predictions of a neural network. To this end, we present a framework called uTRAND, that shifts the problem of anomalous trajectory prediction from the pixel space to a semantic-topological domain. The framework detects and tracks all types of traffic agents in bird's-eye-view videos of traffic cameras mounted at an intersection. By conceptualizing the intersection as a patch-based graph, it is shown that the framework learns and models the normal behaviour of traffic agents without costly manual labeling. Furthermore, uTRAND allows to formulate simple rules to classify anomalous trajectories in a way suited for human interpretation. We show that uTRAND outperforms other state-of-the-art approaches on a dataset of anomalous trajectories collected in a real-world setting, while producing explainable detection results.
Related papers
- GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralAD is an anomaly detection framework designed to operate in semantic, near-distribution, and industrial settings.
We propose a novel self-supervised anomaly generation module that employs straightforward operations like noise addition and shuffling to patch features.
We extensively evaluated our approach on ten datasets, achieving state-of-the-art results in six and on-par performance in the remaining.
arXiv Detail & Related papers (2024-07-17T09:27:41Z) - SemanticFormer: Holistic and Semantic Traffic Scene Representation for Trajectory Prediction using Knowledge Graphs [3.733790302392792]
Tray prediction in autonomous driving relies on accurate representation of all relevant contexts of the driving scene.
We present SemanticFormer, an approach for predicting multimodal trajectories by reasoning over a traffic scene graph.
arXiv Detail & Related papers (2024-04-30T09:11:04Z) - Guarding Graph Neural Networks for Unsupervised Graph Anomaly Detection [16.485082741239808]
Unsupervised graph anomaly detection aims at identifying rare patterns that deviate from the majority in a graph without the aid of labels.
Recent advances have utilized Graph Neural Networks (GNNs) to learn effective node representations.
We propose a framework for Guarding Graph Neural Networks for Unsupervised Graph Anomaly Detection (G3AD)
arXiv Detail & Related papers (2024-04-25T07:09:05Z) - Layout Sequence Prediction From Noisy Mobile Modality [53.49649231056857]
Trajectory prediction plays a vital role in understanding pedestrian movement for applications such as autonomous driving and robotics.
Current trajectory prediction models depend on long, complete, and accurately observed sequences from visual modalities.
We propose LTrajDiff, a novel approach that treats objects obstructed or out of sight as equally important as those with fully visible trajectories.
arXiv Detail & Related papers (2023-10-09T20:32:49Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
We present a BEV domain adaptation method based on CycleGAN that uses prior semantic classification in order to preserve the information of small objects of interest during the domain adaptation process.
The quality of the generated BEVs has been evaluated using a state-of-the-art 3D object detection framework at KITTI 3D Object Detection Benchmark.
arXiv Detail & Related papers (2021-04-22T12:47:37Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Bayesian Graph Convolutional Network for Traffic Prediction [23.30484840210517]
We propose a Bayesian Graph Convolutional Network (BGCN) framework to alleviate these issues.
Under this framework, the graph structure is viewed as a random realization from a parametric generative model.
We verify the effectiveness of our method on five real-world datasets, and the experimental results demonstrate that BGCN attains superior performance compared with state-of-the-art methods.
arXiv Detail & Related papers (2021-04-01T14:19:37Z) - Graph Convolutional Networks for traffic anomaly [4.172516437934823]
Event detection has been an important task in transportation, whose task is to detect points in time when large events disrupts a large portion of the urban traffic network.
To fully capture the spatial and temporal traffic patterns remains a challenge, yet serves a crucial role for effective anomaly detection.
We formulate the problem in a novel way, as detecting anomalies in a set of directed weighted graphs representing the traffic conditions at each time interval.
arXiv Detail & Related papers (2020-12-25T22:36:22Z) - Improving Movement Predictions of Traffic Actors in Bird's-Eye View
Models using GANs and Differentiable Trajectory Rasterization [12.652210024012374]
One of the most critical pieces of the self-driving puzzle is the task of predicting future movement of surrounding traffic actors.
Methods based on top-down sceneization on one side and Generative Adrial Networks (GANs) on the other have shown to be particularly successful.
In this paper we build upon these two directions and propose aversa-based conditional GAN architecture.
We evaluate the proposed method on a large-scale, real-world data set, showing that it outperforms state-of-the-art GAN-based baselines.
arXiv Detail & Related papers (2020-04-14T00:41:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.