論文の概要: LLM App Store Analysis: A Vision and Roadmap
- arxiv url: http://arxiv.org/abs/2404.12737v1
- Date: Fri, 19 Apr 2024 09:30:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 15:36:14.875518
- Title: LLM App Store Analysis: A Vision and Roadmap
- Title(参考訳): LLM App Storeの分析 - ビジョンとロードマップ
- Authors: Yanjie Zhao, Xinyi Hou, Shenao Wang, Haoyu Wang,
- Abstract要約: 大規模言語モデル(LLM)アプリストアは、研究者、開発者、ユーザ、アプリストアマネージャにとって新たな機会と課題を生み出している。
本稿では,データマイニング,セキュリティリスクの識別,開発支援などの重要な側面に着目し,LCMアプリストアの前方分析を行う。
- 参考スコア(独自算出の注目度): 5.1875389249043415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid growth and popularity of large language model (LLM) app stores have created new opportunities and challenges for researchers, developers, users, and app store managers. As the LLM app ecosystem continues to evolve, it is crucial to understand the current landscape and identify potential areas for future research and development. This paper presents a forward-looking analysis of LLM app stores, focusing on key aspects such as data mining, security risk identification, development assistance, etc. By examining these aspects, we aim to provide a vision for future research directions and highlight the importance of collaboration among stakeholders to address the challenges and opportunities within the LLM app ecosystem. The insights and recommendations provided in this paper serve as a foundation for driving innovation, ensuring responsible development, and creating a thriving, user-centric LLM app landscape.
- Abstract(参考訳): 大規模言語モデル(LLM)アプリストアの急速な成長と人気は、研究者、開発者、ユーザ、アプリストアマネージャにとって新たな機会と課題を生み出している。
LLMアプリのエコシステムは進化を続けており、現在の状況を理解し、将来の研究開発の潜在的な領域を特定することが不可欠である。
本稿では,データマイニング,セキュリティリスクの識別,開発支援などの重要な側面に着目し,LCMアプリストアの前方分析を行う。
これらの側面を調べることで、将来の研究方向性のビジョンを提供し、LCMアプリエコシステムにおける課題や機会に対処するステークホルダー間のコラボレーションの重要性を強調することを目指している。
この論文で提供される洞察とレコメンデーションは、イノベーションを推進し、責任ある開発を確実にし、繁栄し、ユーザ中心のLDMアプリランドスケープを構築するための基盤となる。
関連論文リスト
- Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - Decoding Large-Language Models: A Systematic Overview of Socio-Technical Impacts, Constraints, and Emerging Questions [1.1970409518725493]
この記事では、倫理的考察とともに、社会に肯定的な影響を与える可能性のある適用領域を強調します。
これには、開発に関する責任ある考慮、アルゴリズムの改善、倫理的課題、社会的影響が含まれる。
論文 参考訳(メタデータ) (2024-09-25T14:36:30Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
大規模言語モデル(LLM)は金融分野における機械学習アプリケーションに新たな機会を開放した。
我々は、従来のプラクティスを変革し、イノベーションを促進する可能性に焦点を当て、様々な金融業務におけるLLMの適用について検討する。
本稿では,既存の文献を言語タスク,感情分析,財務時系列,財務推論,エージェントベースモデリング,その他の応用分野に分類するための調査を紹介する。
論文 参考訳(メタデータ) (2024-06-15T16:11:35Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
大規模言語モデル(LLM)は、金融、医療、法律の展望に革命をもたらしている。
我々は、医療における診断・治療方法論の強化、財務分析の革新、法的解釈・コンプライアンス戦略の精査におけるLCMの役割を強調した。
これらの分野におけるLLMアプリケーションの倫理を批判的に検討し、既存の倫理的懸念と透明で公平で堅牢なAIシステムの必要性を指摘した。
論文 参考訳(メタデータ) (2024-05-02T22:43:02Z) - Large Language Model Supply Chain: A Research Agenda [5.1875389249043415]
大規模言語モデル(LLM)は、自然言語処理とマルチモーダルコンテンツ生成において前例のない能力を導入し、人工知能に革命をもたらした。
本稿では,LLMサプライチェーンの総合的な研究課題を初めて提示し,重要な課題と機会を特定するための構造的アプローチを提案する。
論文 参考訳(メタデータ) (2024-04-19T09:29:53Z) - LLM-Based Multi-Agent Systems for Software Engineering: Vision and the Road Ahead [14.834072370183106]
本稿では,複雑かつ多面的なソフトウェア工学の課題に対処する上で,マルチエージェント(LMA)システムの進化を考察する。
将来のソフトウェアエンジニアリングプラクティスにおけるLMAシステムの役割を調べることで、このビジョンペーパーは潜在的なアプリケーションと新たな課題を強調します。
論文 参考訳(メタデータ) (2024-04-07T07:05:40Z) - Large Language Models for Education: A Survey and Outlook [69.02214694865229]
各視点の技術的進歩を体系的にレビューし、関連するデータセットとベンチマークを整理し、教育におけるLSMの展開に伴うリスクと課題を特定する。
本調査は、LLMの力を利用して教育実践を変革し、より効果的なパーソナライズされた学習環境を育むための、教育者、研究者、政策立案者のための総合的な技術図を提供することを目的とする。
論文 参考訳(メタデータ) (2024-03-26T21:04:29Z) - A Survey on Evaluation of Large Language Models [87.60417393701331]
大規模言語モデル(LLM)は、学術と産業の両方で人気が高まっている。
本稿では,評価方法,評価方法,評価方法の3つの重要な側面に焦点をあてる。
論文 参考訳(メタデータ) (2023-07-06T16:28:35Z) - How Can Recommender Systems Benefit from Large Language Models: A Survey [82.06729592294322]
大きな言語モデル(LLM)は、印象的な汎用知性と人間のような能力を示している。
我々は,実世界のレコメンデータシステムにおけるパイプライン全体の観点から,この研究の方向性を包括的に調査する。
論文 参考訳(メタデータ) (2023-06-09T11:31:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。