論文の概要: Addressing Bias in Generative AI: Challenges and Research Opportunities in Information Management
- arxiv url: http://arxiv.org/abs/2502.10407v1
- Date: Wed, 22 Jan 2025 10:14:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-02 04:52:05.076318
- Title: Addressing Bias in Generative AI: Challenges and Research Opportunities in Information Management
- Title(参考訳): ジェネレーティブAIにおけるバイアスへの対処 : 情報管理における課題と研究機会
- Authors: Xiahua Wei, Naveen Kumar, Han Zhang,
- Abstract要約: ジェネレーティブAI技術は情報管理システムを変革してきたが、ビジネス上の意思決定を伝える上での有効性を損なう可能性のある、実質的なバイアスを導入した。
この課題は、大規模言語モデル(LLM)の幅広い応用にまたがって、これらのバイアスを特定し、対処することで、情報管理学者に分野を前進させるユニークな機会を与える。
倫理的考察、政策含意、社会技術的視点を取り入れることで、我々は、生成型AIシステムの主要な利害関係者をカバーし、重要な研究課題を提案し、議論を刺激するフレームワークの開発に注力する。
- 参考スコア(独自算出の注目度): 3.9775368901759207
- License:
- Abstract: Generative AI technologies, particularly Large Language Models (LLMs), have transformed information management systems but introduced substantial biases that can compromise their effectiveness in informing business decision-making. This challenge presents information management scholars with a unique opportunity to advance the field by identifying and addressing these biases across extensive applications of LLMs. Building on the discussion on bias sources and current methods for detecting and mitigating bias, this paper seeks to identify gaps and opportunities for future research. By incorporating ethical considerations, policy implications, and sociotechnical perspectives, we focus on developing a framework that covers major stakeholders of Generative AI systems, proposing key research questions, and inspiring discussion. Our goal is to provide actionable pathways for researchers to address bias in LLM applications, thereby advancing research in information management that ultimately informs business practices. Our forward-looking framework and research agenda advocate interdisciplinary approaches, innovative methods, dynamic perspectives, and rigorous evaluation to ensure fairness and transparency in Generative AI-driven information systems. We expect this study to serve as a call to action for information management scholars to tackle this critical issue, guiding the improvement of fairness and effectiveness in LLM-based systems for business practice.
- Abstract(参考訳): 生成AI技術、特にLarge Language Models (LLMs)は、情報管理システムを変革してきたが、ビジネス意思決定を報知する効果を損なう可能性のある、かなりのバイアスを導入した。
この課題は、LLMの幅広い応用にまたがってこれらのバイアスを特定し、対処することで、情報管理学者に分野を前進させるユニークな機会を与える。
本稿では,バイアス源と現在のバイアスの検出・緩和方法に関する議論に基づいて,今後の研究のギャップと機会を探究する。
倫理的考察、政策含意、社会技術的視点を取り入れることで、我々は、生成型AIシステムの主要な利害関係者をカバーし、重要な研究課題を提案し、議論を刺激するフレームワークの開発に注力する。
我々のゴールは、研究者がLLMアプリケーションのバイアスに対処するための実用的な経路を提供することであり、それによって最終的にビジネスの実践に影響を及ぼす情報管理の研究を進めることである。
我々の先見的なフレームワークと研究アジェンダは、ジェネレーティブAI駆動情報システムにおける公平性と透明性を確保するために、学際的アプローチ、革新的な方法、動的な視点、厳密な評価を提唱する。
本研究は,LLMに基づくビジネス実践システムにおける公平性と有効性の向上をめざして,情報管理学者がこの問題に対処するための行動となることを期待する。
関連論文リスト
- Generative Large Recommendation Models: Emerging Trends in LLMs for Recommendation [85.52251362906418]
このチュートリアルでは、大規模言語モデル(LLM)を統合するための2つの主要なアプローチを探求する。
これは、最近の進歩、課題、潜在的研究の方向性を含む、生成的な大規模なレコメンデーションモデルの包括的な概要を提供する。
主なトピックは、データ品質、スケーリング法則、ユーザの行動マイニング、トレーニングと推論の効率性である。
論文 参考訳(メタデータ) (2025-02-19T14:48:25Z) - Bias in Large Language Models: Origin, Evaluation, and Mitigation [4.606140332500086]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、バイアスへの感受性は大きな課題となっている。
本総説では, LLMの発端から現在の緩和戦略まで, バイアスの背景を概観する。
偏りのあるLLMの倫理的および法的含意について論じ、医療や刑事司法のような現実の応用における潜在的な害を強調した。
論文 参考訳(メタデータ) (2024-11-16T23:54:53Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - Deploying Large Language Models With Retrieval Augmented Generation [0.21485350418225244]
Retrieval Augmented Generationは、大規模言語モデルのトレーニングセット外のデータソースからの知識を統合するための重要なアプローチとして登場した。
本稿では,LLMとRAGを統合して情報検索を行うパイロットプロジェクトの開発とフィールドテストから得られた知見について述べる。
論文 参考訳(メタデータ) (2024-11-07T22:11:51Z) - The Transformative Impact of AI and Deep Learning in Business: A Literature Review [0.0]
本稿では,ビジネスのさまざまな機能領域におけるAIと深層学習の根本的役割を概観する。
医療分野、小売業と製造業、農業と農業、財政における材料的応用をカバーしている。
論文 参考訳(メタデータ) (2024-10-30T20:35:03Z) - Preliminary Insights on Industry Practices for Addressing Fairness Debt [4.546982900370235]
本研究は,ソフトウェア業界のAIシステムにおいて,ソフトウェアプロフェッショナルがバイアスを特定し,対処する方法について検討する。
本稿では,公正性負債に関する最初の証拠を提示し,AIシステムにおける公平性に関連する問題を管理するための構造化ガイドラインの開発基盤を提供する。
論文 参考訳(メタデータ) (2024-09-04T04:18:42Z) - Navigating LLM Ethics: Advancements, Challenges, and Future Directions [5.023563968303034]
本研究では,人工知能分野におけるLarge Language Models(LLM)を取り巻く倫理的問題に対処する。
LLMと他のAIシステムによってもたらされる共通の倫理的課題を探求する。
幻覚、検証可能な説明責任、検閲の複雑さの復号化といった課題を強調している。
論文 参考訳(メタデータ) (2024-05-14T15:03:05Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
大規模言語モデル(LLM)は、金融、医療、法律の展望に革命をもたらしている。
我々は、医療における診断・治療方法論の強化、財務分析の革新、法的解釈・コンプライアンス戦略の精査におけるLCMの役割を強調した。
これらの分野におけるLLMアプリケーションの倫理を批判的に検討し、既存の倫理的懸念と透明で公平で堅牢なAIシステムの必要性を指摘した。
論文 参考訳(メタデータ) (2024-05-02T22:43:02Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
本稿では,現代大規模言語モデル (LLM) の誤用の可能性について検討する。
本研究は, LLMが効果的な誤情報発生器として機能し, DOQAシステムの性能が著しく低下することを明らかにする。
論文 参考訳(メタデータ) (2023-05-23T04:10:26Z) - Fairness in Recommender Systems: Research Landscape and Future
Directions [119.67643184567623]
本稿は,近年の地域におけるフェアネスの概念と概念について概観する。
この分野での研究が現在どのように行われているのかを概観する。
全体として、最近の研究成果の分析は、ある研究のギャップを示している。
論文 参考訳(メタデータ) (2022-05-23T08:34:25Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。