MAexp: A Generic Platform for RL-based Multi-Agent Exploration
- URL: http://arxiv.org/abs/2404.12824v1
- Date: Fri, 19 Apr 2024 12:00:10 GMT
- Title: MAexp: A Generic Platform for RL-based Multi-Agent Exploration
- Authors: Shaohao Zhu, Jiacheng Zhou, Anjun Chen, Mingming Bai, Jiming Chen, Jinming Xu,
- Abstract summary: Existing platforms suffer from the inefficiency in sampling and the lack of diversity in Multi-Agent Reinforcement Learning (MARL) algorithms.
We propose MAexp, a generic platform for multi-agent exploration that integrates a broad range of state-of-the-art MARL algorithms and representative scenarios.
- Score: 5.672198570643586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The sim-to-real gap poses a significant challenge in RL-based multi-agent exploration due to scene quantization and action discretization. Existing platforms suffer from the inefficiency in sampling and the lack of diversity in Multi-Agent Reinforcement Learning (MARL) algorithms across different scenarios, restraining their widespread applications. To fill these gaps, we propose MAexp, a generic platform for multi-agent exploration that integrates a broad range of state-of-the-art MARL algorithms and representative scenarios. Moreover, we employ point clouds to represent our exploration scenarios, leading to high-fidelity environment mapping and a sampling speed approximately 40 times faster than existing platforms. Furthermore, equipped with an attention-based Multi-Agent Target Generator and a Single-Agent Motion Planner, MAexp can work with arbitrary numbers of agents and accommodate various types of robots. Extensive experiments are conducted to establish the first benchmark featuring several high-performance MARL algorithms across typical scenarios for robots with continuous actions, which highlights the distinct strengths of each algorithm in different scenarios.
Related papers
- MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
Large Language Models (LLMs) have demonstrated remarkable planning abilities across various domains, including robotics manipulation and navigation.
We propose a novel multi-agent LLM framework that distributes high-level planning and low-level control code generation across specialized LLM agents.
We evaluate our approach on nine RLBench tasks, including long-horizon tasks, and demonstrate its ability to solve robotics manipulation in a zero-shot setting.
arXiv Detail & Related papers (2024-11-26T17:53:44Z) - Exploring Multi-Agent Reinforcement Learning for Unrelated Parallel Machine Scheduling [2.3034630097498883]
The study introduces the Reinforcement Learning environment and conducts empirical analyses.
The experiments employ various deep neural network policies for single- and Multi-Agent approaches.
While Single-Agent algorithms perform adequately in reduced scenarios, Multi-Agent approaches reveal challenges in cooperative learning but a scalable capacity.
arXiv Detail & Related papers (2024-11-12T08:27:27Z) - Very Large-Scale Multi-Agent Simulation in AgentScope [112.98986800070581]
We develop new features and components for AgentScope, a user-friendly multi-agent platform.
We propose an actor-based distributed mechanism towards great scalability and high efficiency.
We also provide a web-based interface for conveniently monitoring and managing a large number of agents.
arXiv Detail & Related papers (2024-07-25T05:50:46Z) - Imagine, Initialize, and Explore: An Effective Exploration Method in
Multi-Agent Reinforcement Learning [27.81925751697255]
We propose a novel method for efficient multi-agent exploration in complex scenarios.
We formulate the imagination as a sequence modeling problem, where the states, observations, prompts, actions, and rewards are predicted autoregressively.
By initializing agents at the critical states, IIE significantly increases the likelihood of discovering potentially important underexplored regions.
arXiv Detail & Related papers (2024-02-28T01:45:01Z) - Factorization of Multi-Agent Sampling-Based Motion Planning [72.42734061131569]
Modern robotics often involves multiple embodied agents operating within a shared environment.
Standard sampling-based algorithms can be used to search for solutions in the robots' joint space.
We integrate the concept of factorization into sampling-based algorithms, which requires only minimal modifications to existing methods.
We present a general implementation of a factorized SBA, derive an analytical gain in terms of sample complexity for PRM*, and showcase empirical results for RRG.
arXiv Detail & Related papers (2023-04-01T15:50:18Z) - Asynchronous Multi-Agent Reinforcement Learning for Efficient Real-Time
Multi-Robot Cooperative Exploration [16.681164058779146]
We consider the problem of cooperative exploration where multiple robots need to cooperatively explore an unknown region as fast as possible.
Existing MARL-based methods adopt action-making steps as the metric for exploration efficiency by assuming all the agents are acting in a fully synchronous manner.
We propose an asynchronous MARL solution, Asynchronous Coordination Explorer (ACE), to tackle this real-world challenge.
arXiv Detail & Related papers (2023-01-09T14:53:38Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency.
We propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem.
Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines.
arXiv Detail & Related papers (2022-11-29T17:10:24Z) - From Multi-agent to Multi-robot: A Scalable Training and Evaluation
Platform for Multi-robot Reinforcement Learning [12.74238738538799]
Multi-agent reinforcement learning (MARL) has been gaining extensive attention from academia and industries in the past few decades.
It remains unknown how these methods perform in real-world scenarios, especially multi-robot systems.
This paper introduces a scalable emulation platform for multi-robot reinforcement learning (MRRL) called SMART to meet this need.
arXiv Detail & Related papers (2022-06-20T06:36:45Z) - The Multi-Agent Pickup and Delivery Problem: MAPF, MARL and Its
Warehouse Applications [2.969705152497174]
We study two state-of-the-art solutions to the multi-agent pickup and delivery problem based on different principles.
Specifically, a recent MAPF algorithm called conflict-based search (CBS) and a current MARL algorithm called shared experience actor-critic (SEAC) are studied.
arXiv Detail & Related papers (2022-03-14T13:23:35Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - Forgetful Experience Replay in Hierarchical Reinforcement Learning from
Demonstrations [55.41644538483948]
In this paper, we propose a combination of approaches that allow the agent to use low-quality demonstrations in complex vision-based environments.
Our proposed goal-oriented structuring of replay buffer allows the agent to automatically highlight sub-goals for solving complex hierarchical tasks in demonstrations.
The solution based on our algorithm beats all the solutions for the famous MineRL competition and allows the agent to mine a diamond in the Minecraft environment.
arXiv Detail & Related papers (2020-06-17T15:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.