論文の概要: An Evaluation Benchmark for Adverse Drug Event Prediction from Clinical Trial Results
- arxiv url: http://arxiv.org/abs/2404.12827v3
- Date: Mon, 10 Mar 2025 09:51:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:42:30.121361
- Title: An Evaluation Benchmark for Adverse Drug Event Prediction from Clinical Trial Results
- Title(参考訳): 臨床試験結果からの逆薬物事象予測のための評価基準
- Authors: Anthony Yazdani, Alban Bornet, Philipp Khlebnikov, Boya Zhang, Hossein Rouhizadeh, Poorya Amini, Douglas Teodoro,
- Abstract要約: 副作用薬物イベント(ADEs)は臨床試験における主要な安全性の問題である。
単剤治療における多ラベルADE予測のためのデータセットであるCT-ADEを紹介する。
- 参考スコア(独自算出の注目度): 0.10051474951635876
- License:
- Abstract: Adverse drug events (ADEs) are a major safety issue in clinical trials. Thus, predicting ADEs is key to developing safer medications and enhancing patient outcomes. To support this effort, we introduce CT-ADE, a dataset for multilabel ADE prediction in monopharmacy treatments. CT-ADE encompasses 2,497 drugs and 168,984 drug-ADE pairs from clinical trial results, annotated using the MedDRA ontology. Unlike existing resources, CT-ADE integrates treatment and target population data, enabling comparative analyses under varying conditions, such as dosage, administration route, and demographics. In addition, CT-ADE systematically collects all ADEs in the study population, including positive and negative cases. To provide a baseline for ADE prediction performance using the CT-ADE dataset, we conducted analyses using large language models (LLMs). The best LLM achieved an F1-score of 56%, with models incorporating treatment and patient information outperforming by 21%-38% those relying solely on the chemical structure. These findings underscore the importance of contextual information in ADE prediction and establish CT-ADE as a robust resource for safety risk assessment in pharmaceutical research and development.
- Abstract(参考訳): 副作用薬物イベント(ADEs)は臨床試験における主要な安全性の問題である。
したがって、ADEsの予測は、より安全な薬の開発と患者による結果の向上の鍵となる。
この取り組みを支援するために,単薬理治療におけるマルチラベルADE予測のためのデータセットであるCT-ADEを紹介する。
CT-ADEは、臨床試験の結果から2,497の薬物と168,984の薬物とADEのペアを含んでいる。
既存のリソースとは異なり、CT-ADEは治療データと対象人口データを統合し、投与量、管理経路、人口統計などの様々な条件下での比較分析を可能にする。
さらにCT-ADEは、陽性例と陰性例を含むすべてのADEを系統的に収集する。
CT-ADEデータセットを用いたADE予測性能のベースラインとして,大規模言語モデル(LLM)を用いた解析を行った。
最高のLCMはF1スコアの56%を達成し、治療と患者情報を組み込んだモデルは、化学構造にのみ依存する21%~38%向上した。
これらの知見は, ADE予測における文脈情報の重要性を浮き彫りにして, 医薬品研究・開発における安全リスク評価のための堅牢な資源としてCT-ADEを確立した。
関連論文リスト
- MEXA-CTP: Mode Experts Cross-Attention for Clinical Trial Outcome Prediction [14.116060944536011]
我々は、容易に利用可能なマルチモーダルデータを統合し、効果的な表現を生成する軽量アテンションベースモデルMEXA-CTPを提案する。
実験の結果,MEXA-CTPはF1スコアで11.3%,PR-AUCで12.2%,ROC-AUCで2.5%向上した。
論文 参考訳(メタデータ) (2025-01-12T14:35:31Z) - Enhancing End Stage Renal Disease Outcome Prediction: A Multi-Sourced Data-Driven Approach [7.212939068975618]
10,326人のCKD患者のデータを利用して,2009年から2018年までの臨床とクレーム情報を組み合わせた。
24ヶ月の観測窓は早期検出と予測精度のバランスをとるのに最適であると同定された。
2021年のeGFR方程式は予測精度を改善し、特にアフリカ系アメリカ人の偏見を低減した。
論文 参考訳(メタデータ) (2024-10-02T03:21:01Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
AIによる薬物発見の大きな課題は、高品質なデータの不足である。
薬物動態の4つの重要なパラメータを同時に予測するPEMAL法を開発した。
実験の結果,PEMALは一般的なグラフニューラルネットワークに比べてデータ需要を著しく低減することがわかった。
論文 参考訳(メタデータ) (2024-04-16T07:42:55Z) - Enhancing Acute Kidney Injury Prediction through Integration of Drug
Features in Intensive Care Units [0.0]
急性腎障害(AKI)予測と腎障害薬との関連は, 治療現場ではまだ検討されていない。
そこで本研究では,患者処方データをモダリティとして活用し,既存のAKI予測モデルを改善する手法を提案する。
論文 参考訳(メタデータ) (2024-01-09T05:42:32Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - Prediction of drug effectiveness in rheumatoid arthritis patients based
on machine learning algorithms [2.5759046095742453]
慢性関節リウマチ(RA)は、患者の免疫系が誤って自身の組織を標的としたときに引き起こされる自己免疫疾患である。
機械学習(ML)は、患者の電子的健康記録のパターンを特定し、患者の結果を改善する最良の臨床治療を予測する可能性がある。
本研究は, 臨床データから情報を取り出すためのデータ処理パイプラインを設計し, 機能的使用のために前処理し, 2) 薬物に対するRA患者の反応を予測し, 分類モデルの性能を評価するためのTNFフレームワークを導入した。
論文 参考訳(メタデータ) (2022-10-14T15:15:37Z) - Literature-Augmented Clinical Outcome Prediction [10.46990394710927]
EBMとAIベースの臨床モデルとのギャップを埋める技術を導入する。
集中治療(ICU)患者情報に基づいて患者固有の文献を自動的に検索するシステムを提案する。
我々のモデルは,最近の強靭なベースラインと比較して,3つの課題に対する予測精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-11-16T11:19:02Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - HINT: Hierarchical Interaction Network for Trial Outcome Prediction
Leveraging Web Data [56.53715632642495]
臨床試験は、有効性、安全性、または患者採用の問題により、不確実な結果に直面する。
本稿では,より一般的な臨床試験結果予測のための階層型Interaction Network(HINT)を提案する。
論文 参考訳(メタデータ) (2021-02-08T15:09:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。