Assessing Quantum Extreme Learning Machines for Software Testing in Practice
- URL: http://arxiv.org/abs/2410.15494v2
- Date: Fri, 25 Oct 2024 15:45:13 GMT
- Title: Assessing Quantum Extreme Learning Machines for Software Testing in Practice
- Authors: Asmar Muqeet, Hassan Sartaj, Aitor Arreieta, Shaukat Ali, Paolo Arcaini, Maite Arratibel, Julie Marie Gjøby, Narasimha Raghavan Veeraragavan, Jan F. Nygård,
- Abstract summary: We study how quantum noise affects QELM in three industrial and real-world classical software testing case studies.
Our results show that QELMs are significantly affected by quantum noise, with a performance drop of 250% in regression tasks and 50% in classification tasks.
While error mitigation techniques can enhance noise resilience, achieving an average 3.0% performance drop in classification, but their effectiveness varies by context.
- Score: 6.071493448254842
- License:
- Abstract: Machine learning has been extensively applied for various classical software testing activities such as test generation, minimization, and prioritization. Along the same lines, recently, there has been interest in applying quantum machine learning to software testing. For example, Quantum Extreme Learning Machines (QELMs) were recently applied for testing classical software of industrial elevators. However, most studies on QELMs, whether in software testing or other areas, used ideal quantum simulators that fail to account for the noise in current quantum computers. While ideal simulations offer insight into QELM's theoretical capabilities, they do not enable studying their performance on current noisy quantum computers. To this end, we study how quantum noise affects QELM in three industrial and real-world classical software testing case studies, providing insights into QELMs' robustness to noise. Such insights assess QELMs potential as a viable solution for industrial software testing problems in today's noisy quantum computing. Our results show that QELMs are significantly affected by quantum noise, with a performance drop of 250% in regression tasks and 50% in classification tasks. Although introducing noise during both ML training and testing phases can improve results, the reduction is insufficient for practical applications. While error mitigation techniques can enhance noise resilience, achieving an average 3.0% performance drop in classification, but their effectiveness varies by context, highlighting the need for QELM-tailored error mitigation strategies.
Related papers
- Generalization Error Bound for Quantum Machine Learning in NISQ Era -- A Survey [37.69303106863453]
We conduct a Systematic Mapping Study (SMS) to explore the state-of-the-art generalization bound for supervised Quantum Machine Learning (QML) in the Noisy Intermediate-Scale Quantum (NISQ) era.
Our study systematically summarizes the existing computational platforms with quantum hardware, datasets, optimization techniques, and the common properties of the bounds found in the literature.
The SMS also highlights the limitations and challenges in QML in the NISQ era and discusses future research directions to advance the field.
arXiv Detail & Related papers (2024-09-11T21:17:30Z) - A Machine Learning-Based Error Mitigation Approach For Reliable Software Development On IBM'S Quantum Computers [8.50998018964906]
Current quantum computers have inherent noise that results in errors in the outputs of quantum software executing on the quantum computers.
This paper proposes a practical machine learning approach, called Q-LEAR, to mitigate noise errors in quantum software outputs.
Results show that, compared to the baseline, Q-LEAR achieved a 25% average improvement in error mitigation on both real quantum computers and simulators.
arXiv Detail & Related papers (2024-04-19T13:51:40Z) - Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK [0.3624329910445628]
This paper investigates the scalability and noise resilience of quantum generative learning applications.
We employ rigorous benchmarking techniques to track progress and identify challenges in scaling QML algorithms.
We show that QGANs are not as affected by the curse of dimensionality as QCBMs and to which extent QCBMs are resilient to noise.
arXiv Detail & Related papers (2024-03-27T15:05:55Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Mitigating Noise in Quantum Software Testing Using Machine Learning [9.296542004383115]
We propose a noise-aware approach to alleviate the noise effect on test results of quantum programs.
QOIN employs machine learning techniques to learn the noise effect of a quantum computer and filter it from a quantum program's outputs.
Results show that QOIN can reduce the noise effect by more than $80%$ on the majority of noise models.
arXiv Detail & Related papers (2023-06-29T14:51:19Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Improving Quantum Classifier Performance in NISQ Computers by Voting
Strategy from Ensemble Learning [9.257859576573942]
Large error rates occur in quantum algorithms due to quantum decoherence and imprecision of quantum gates.
In this study, we suggest that ensemble quantum classifiers be optimized with plurality voting.
arXiv Detail & Related papers (2022-10-04T14:59:58Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
Quantum chemistry and materials is one of the most promising applications of quantum computing.
Much work is still to be done in matching industry-relevant problems in these areas with quantum algorithms that can solve them.
arXiv Detail & Related papers (2022-03-14T16:51:36Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.