Saturating a Fundamental Bound on Quantum Measurements' Accuracy
- URL: http://arxiv.org/abs/2404.12910v1
- Date: Fri, 19 Apr 2024 14:33:16 GMT
- Title: Saturating a Fundamental Bound on Quantum Measurements' Accuracy
- Authors: Nicolò Piccione, Maria Maffei, Andrew N. Jordan, Kater W. Murch, Alexia Auffèves,
- Abstract summary: We show it is possible to saturate the Wigner-Araki-Yanase theorem's upper-bound on the measurement's accuracy.
We propose a simple interferometric setup in which a flying particle (the quantum meter) is used to measure the state of a qubit.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A quantum system is usually measured through observations performed on a second quantum system, or meter, to which it is coupled. In this scenario, fundamental limitations arise as stated by the celebrated Wigner-Araki-Yanase theorem and its generalizations, predicting an upper-bound on the measurement's accuracy (Ozawa's bound). Here, we show it is possible to saturate this fundamental bound. We propose a simple interferometric setup, arguably within reach of present technology, in which a flying particle (the quantum meter) is used to measure the state of a qubit (the target system). We show that the bound can be saturated and that this happens only if the flying particle is prepared in a Gaussian wavepacket.
Related papers
- Entanglement measurement based on convex hull properties [0.0]
We will propose a scheme for measuring quantum entanglement, which starts with treating the set of quantum separable states as a convex hull of quantum separable pure states.
Although a large amount of data is required in the measurement process, this method is not only applicable to 2-qubit quantum states, but also a entanglement measurement method that can be applied to any dimension and any fragment.
arXiv Detail & Related papers (2024-11-08T08:03:35Z) - Classification of joint quantum measurements based on entanglement cost of localization [42.72938925647165]
We propose a systematic classification of joint measurements based on entanglement cost.
We show how to numerically explore higher levels and construct generalizations to higher dimensions and multipartite settings.
arXiv Detail & Related papers (2024-08-01T18:00:01Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Can we accurately read or write quantum data? [0.0]
I show that accurate measurements and preparations are impossible if the total Hamiltonian is bounded from below.
This result invites a reevaluation of the limitations of quantum control, quantum computing, and other quantum technologies.
arXiv Detail & Related papers (2024-04-08T16:09:51Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - A universal scheme to self-test any quantum state and extremal measurement [41.94295877935867]
quantum network considered in this work is the simple star network, which is implementable using current technologies.
For our purposes, we also construct a scheme that can be used to self-test the two-dimensional tomographically complete set of measurements with an arbitrary number of parties.
arXiv Detail & Related papers (2023-12-07T16:20:28Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Quantum Back-action Limits in Dispersively Measured Bose-Einstein
Condensates [0.0]
We theoretically and experimentally characterize quantum back-action in atomic Bose-Einstein condensates interacting with a far-from resonant laser beam.
We experimentally quantify the resulting wavefunction change in terms of the contrast of a Ramsey interferometer.
This result is a necessary precursor for achieving true quantum back-action limited measurements of quantum gases.
arXiv Detail & Related papers (2022-09-09T17:04:36Z) - Entanglement and Quantum Correlation Measures from a Minimum Distance
Principle [0.0]
Entanglement, and quantum correlation, are precious resources for quantum technologies implementation based on quantum information science.
We derive an explicit measure able to quantify the degree of quantum correlation for pure or mixed multipartite states.
We prove that our entanglement measure is textitfaithful in the sense that it vanishes only on the set of separable states.
arXiv Detail & Related papers (2022-05-14T22:18:48Z) - Scattering as a quantum metrology problem: a quantum walk approach [0.0]
We address the scattering of a quantum particle by a one-dimensional barrier potential over a set of discrete positions.
We formalize the problem as a continuous-time quantum walk on a lattice with an impurity, and use the quantum Fisher information as a mean to quantify the maximal possible accuracy in the estimation of the height of the barrier.
arXiv Detail & Related papers (2020-10-23T14:42:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.