論文の概要: The Visual Debugger Tool
- arxiv url: http://arxiv.org/abs/2404.12932v1
- Date: Fri, 19 Apr 2024 15:02:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 14:36:33.662724
- Title: The Visual Debugger Tool
- Title(参考訳): Visual Debuggerツール
- Authors: Tim Kräuter, Harald König, Adrian Rutle, Yngve Lamo,
- Abstract要約: 本稿では,プログラム実行情報をオブジェクト図としてグラフィカルに視覚化する。
私たちのツールは、人気のあるJava開発環境IntelliJ IDEAに完全に統合されています。
- 参考スコア(独自算出の注目度): 1.0624606551524207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Debugging is an essential part of software maintenance and evolution since it allows software developers to analyze program execution step by step. Understanding a program is required to fix potential flaws, alleviate bottlenecks, and implement new desired features. Thus, software developers spend a large percentage of their time validating and debugging software, resulting in high software maintenance and evolution cost. We aim to reduce this cost by providing a novel visual debugging tool to software developers to foster program comprehension during debugging. Our debugging tool visualizes program execution information graphically as an object diagram and is fully integrated into the popular Java development environment IntelliJ IDEA. Moreover, the object diagram allows interactions to explore program execution information in more detail. A demonstration of our tool is available at https://www.youtube.com/watch?v=lU_OgotweRk.
- Abstract(参考訳): ソフトウェア開発者はプログラムの実行を段階的に分析できるので、デバッグはソフトウェアのメンテナンスと進化の重要な部分です。
プログラムを理解するには潜在的な欠陥を修正し、ボトルネックを緩和し、新しい望ましい機能を実装する必要がある。
したがって、ソフトウェア開発者はソフトウェアの検証とデバッグに多くの時間を費やし、結果としてソフトウェアのメンテナンスと進化のコストが高くなります。
我々は、デバッグ中にプログラムの理解を深めるために、新しいビジュアルデバッグツールをソフトウェア開発者に提供することによって、このコストを削減することを目指している。
私たちのデバッグツールは、プログラムの実行情報をオブジェクトダイアグラムとしてグラフィカルに視覚化し、人気のあるJava開発環境IntelliJ IDEAに完全に統合しています。
さらに、オブジェクトダイアグラムは、インタラクションがプログラムの実行情報をより詳細に探索することを可能にする。
私たちのツールのデモはhttps://www.youtube.com/watch?
v=lU_OgotweRk。
関連論文リスト
- Multi-Task Program Error Repair and Explanatory Diagnosis [28.711745671275477]
マルチタスクプログラムエラー修復・説明診断(mPRED)のための新しい機械学習手法を提案する。
ソースコードのエンコードには事前訓練された言語モデルが使用され、ダウンストリームモデルはエラーを特定して修復するために特別に設計されている。
プログラム構造を可視化・解析するために,プログラム構造の可視化にグラフニューラルネットワークを用いる。
論文 参考訳(メタデータ) (2024-10-09T05:09:24Z) - VDebugger: Harnessing Execution Feedback for Debugging Visual Programs [103.61860743476933]
V Debuggerは、視覚プログラムのローカライズとデバッギングのために、段階的に実行を追跡することで訓練された、批評家とリファインダーのフレームワークである。
Vデバッガは、詳細な実行フィードバックを活用してプログラムエラーを特定し、修正する。
6つのデータセットの評価は、Vデバッガの有効性を示し、ダウンストリームタスクの精度が最大3.2%向上したことを示している。
論文 参考訳(メタデータ) (2024-06-19T11:09:16Z) - Code Compass: A Study on the Challenges of Navigating Unfamiliar Codebases [2.808331566391181]
これらの問題に対処するための新しいツールであるCodeを提案する。
本研究は,現在のツールと方法論における大きなギャップを浮き彫りにしている。
私たちのフォーマティブな調査は、開発者がドキュメントをナビゲートする時間をいかに効率的に削減するかを示しています。
論文 参考訳(メタデータ) (2024-05-10T06:58:31Z) - DevBench: A Comprehensive Benchmark for Software Development [72.24266814625685]
DevBenchは、ソフトウェア開発ライフサイクルのさまざまな段階にわたる大規模言語モデル(LLM)を評価するベンチマークである。
GPT-4-Turboを含む現在のLLMは、DevBench内での課題の解決に失敗している。
本研究は,LLMを現実のプログラミングアプリケーションに展開する上で,現実的な知見を提供するものである。
論文 参考訳(メタデータ) (2024-03-13T15:13:44Z) - Charting a Path to Efficient Onboarding: The Role of Software
Visualization [49.1574468325115]
本研究は,ソフトウェアビジュアライゼーションツールを用いたマネージャ,リーダ,開発者の親しみやすさを探求することを目的としている。
本手法は, 質問紙調査と半構造化面接を用いて, 実践者から収集したデータの量的, 質的分析を取り入れた。
論文 参考訳(メタデータ) (2024-01-17T21:30:45Z) - CLOVA: A Closed-Loop Visual Assistant with Tool Usage and Update [69.59482029810198]
CLOVAは、推論、リフレクション、学習フェーズを含むフレームワーク内で動作するクローズドループビジュアルアシスタントである。
その結果,CLOVAは既存のツール利用手法を5%,知識タグ付けでは10%,画像編集では20%,視覚的質問応答や複数画像推論では5%に上回っていることがわかった。
論文 参考訳(メタデータ) (2023-12-18T03:34:07Z) - De-fine: Decomposing and Refining Visual Programs with Auto-Feedback [75.62712247421146]
De-fineは、複雑なタスクを単純なサブタスクに分解し、オートフィードバックを通じてプログラムを洗練する、トレーニング不要のフレームワークである。
様々な視覚的タスクに対する我々の実験は、De-fineがより堅牢なプログラムを生成することを示している。
論文 参考訳(メタデータ) (2023-11-21T06:24:09Z) - Intelligent Software Tooling for Improving Software Development [3.1763879286782966]
ディープラーニング(DL)は、ソフトウェア開発プロセスを含む多くの領域において、自動化の大幅な進歩を示しています。
この成功の主な理由は、GitHub経由で利用可能なオープンソースコードや、トレーニング対象とするRICOとReDRAWを備えたモバイルグラフィカルユーザインタフェース(GUI)の画像データセットなど、大規模なデータセットが利用可能であることだ。
論文 参考訳(メタデータ) (2023-10-17T01:29:07Z) - Robustar: Interactive Toolbox Supporting Precise Data Annotation for
Robust Vision Learning [53.900911121695536]
ソフトウェアRobustarの初期リリースを紹介します。
それは、データ駆動の観点から視覚分類機械学習モデルの堅牢性を改善することを目的としている。
論文 参考訳(メタデータ) (2022-07-18T21:12:28Z) - Eye: Program Visualizer for CS2 [1.319058156672392]
Eyeはプログラムの実行を視覚化するインタラクティブツールである。
一般的な環境でのデータ構造の特性と利用を実証する。
EyeはCS2の学生がオンラインプログラミングのWebサイトで利用できる無数のプログラムをより容易に理解するためのゲートウェイを開く。
論文 参考訳(メタデータ) (2021-01-28T16:16:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。