論文の概要: Simulated Interactive Debugging
- arxiv url: http://arxiv.org/abs/2501.09694v1
- Date: Thu, 16 Jan 2025 17:47:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:11:16.340533
- Title: Simulated Interactive Debugging
- Title(参考訳): Simulated Interactive Debugging
- Authors: Yannic Noller, Erick Chandra, Srinidhi HC, Kenny Choo, Cyrille Jegourel, Oka Kurniawan, Christopher M. Poskitt,
- Abstract要約: 我々は,学生がデバッグプロセスに沿って対話的に指導する「シミュレート・インタラクティブ」という手法を提案する。
このガイダンスは、生徒が解法を修復し、適切な「学習」経験を持つことを奨励することを目的としている。
- 参考スコア(独自算出の注目度): 3.3333163429719677
- License:
- Abstract: Debugging software, i.e., the localization of faults and their repair, is a main activity in software engineering. Therefore, effective and efficient debugging is one of the core skills a software engineer must develop. However, the teaching of debugging techniques is usually very limited or only taught in indirect ways, e.g., during software projects. As a result, most Computer Science (CS) students learn debugging only in an ad-hoc and unstructured way. In this work, we present our approach called Simulated Interactive Debugging that interactively guides students along the debugging process. The guidance aims to empower the students to repair their solutions and have a proper "learning" experience. We envision that such guided debugging techniques can be integrated into programming courses early in the CS education curriculum. To perform an initial evaluation, we developed a prototypical implementation using traditional fault localization techniques and large language models. Students can use features like the automated setting of breakpoints or an interactive chatbot. We designed and executed a controlled experiment that included this IDE-integrated tooling with eight undergraduate CS students. Based on the responses, we conclude that the participants liked the systematic guidance by the assisted debugger. In particular, they rated the automated setting of breakpoints as the most effective, followed by the interactive debugging and chatting, and the explanations for how breakpoints were set. In our future work, we will improve our concept and implementation, add new features, and perform more intensive user studies.
- Abstract(参考訳): ソフトウェアのデバッグ、すなわち欠陥の局所化とその修復は、ソフトウェア工学における主要な活動である。
したがって、効果的で効率的なデバッグは、ソフトウェアエンジニアが開発しなければならないコアスキルの1つです。
しかし、デバッグテクニックの教えは通常、ソフトウェアプロジェクトで間接的にしか教えられません。
その結果、ほとんどのコンピュータサイエンス(CS)の学生は、アドホックで非構造的な方法でのみデバッグを学ぶようになった。
本研究では,学生をデバッグプロセスに沿ってインタラクティブに誘導するSimulated Interactive Debuggingという手法を提案する。
このガイダンスは、生徒が解法を修復し、適切な「学習」経験を持つことを奨励することを目的としている。
CS教育課程の早期に,このようなデバッグ手法をプログラミングコースに組み込むことが期待できる。
初期評価を行うため,従来のフォールトローカライゼーション手法と大規模言語モデルを用いたプロトタイプ実装を開発した。
生徒はブレークポイントの自動設定や対話型チャットボットなどの機能を利用できる。
我々は,8人の大学生を対象としたIDE統合ツールを含む制御された実験を設計・実行した。
回答に基づき, 参加者は, デバッガによる系統的指導を好んだ。
特に彼らは、ブレークポイントの自動設定を最も効果的であると評価し、続いてインタラクティブなデバッグとチャット、ブレークポイントの設定方法の説明を行った。
今後の作業では、概念と実装を改善し、新しい機能を追加し、より集中的なユーザスタディを実行します。
関連論文リスト
- A Proposal for a Debugging Learning Support Environment for Undergraduate Students Majoring in Computer Science [0.0]
生徒はデバッガの使い方を知らないし、使ったこともない。
我々は,正しいブレークポイント配置の自己学習を可能にする機能をScratchに実装した。
論文 参考訳(メタデータ) (2024-07-25T03:34:19Z) - WIP: A Unit Testing Framework for Self-Guided Personalized Online Robotics Learning [3.613641107321095]
本稿では,授業ワークフローに統合しながら,単体テストのためのシステムを構築することに焦点を当てる。
フレームワークのパーソナライズされた学生中心のアプローチに合わせて、この方法は学生がプログラミング作業を簡単に修正し、デバッグできるようにする。
単体テストを含むコースワークフローは、学習環境を強化し、学生が自己指導型でロボットをプログラムする方法を学習できるように、よりインタラクティブにする。
論文 参考訳(メタデータ) (2024-05-18T00:56:46Z) - NExT: Teaching Large Language Models to Reason about Code Execution [50.93581376646064]
大規模言語モデル(LLM)のコードは通常、プログラムの表面テキスト形式に基づいて訓練される。
NExTは,プログラムの実行トレースを検査し,実行時の動作を判断する手法である。
論文 参考訳(メタデータ) (2024-04-23T01:46:32Z) - NuzzleBug: Debugging Block-Based Programs in Scratch [11.182625995483862]
NuzzleBugは、人気のあるブロックベースのプログラミング環境であるScratchの拡張である。
これは、実行について質問し、回答を提供することができる尋問デバッガである。
教師はNuzzleBugが有用であると考えており、子どもたちはプログラムの欠陥を効果的にデバッグすることができる。
論文 参考訳(メタデータ) (2023-09-25T18:56:26Z) - CRITIC: Large Language Models Can Self-Correct with Tool-Interactive
Critiquing [139.77117915309023]
CRITICは、大規模な言語モデルに対して、ツールとのヒューマンインタラクションに似た方法で、自分たちのアウトプットの検証と修正を可能にする。
自由形式の質問応答、数学的プログラム合成、毒性低減を含む包括的評価は、CRITICがLLMの性能を一貫して向上することを証明している。
論文 参考訳(メタデータ) (2023-05-19T15:19:44Z) - Giving Feedback on Interactive Student Programs with Meta-Exploration [74.5597783609281]
ウェブサイトやゲームのようなインタラクティブなソフトウェアを開発することは、特にコンピュータ科学を学ぶための魅力的な方法である。
標準的アプローチでは、インストラクターは、学生が実装した対話型プログラムを手動で評価する必要がある。
Code.orgのような何百万ものオンラインプラットフォームは、インタラクティブなプログラムを実装するための代入に関するフィードバックを提供することができない。
論文 参考訳(メタデータ) (2022-11-16T10:00:23Z) - Chain of Thought Imitation with Procedure Cloning [129.62135987416164]
本稿では,一連の専門家計算を模倣するために,教師付きシーケンス予測を適用したプロシージャクローニングを提案する。
本研究では、専門家の行動の中間計算を模倣することで、プロシージャのクローン化により、未知の環境構成に顕著な一般化を示すポリシーを学習できることを示す。
論文 参考訳(メタデータ) (2022-05-22T13:14:09Z) - Learning Multi-Objective Curricula for Deep Reinforcement Learning [55.27879754113767]
深部強化学習(DRL)のサンプル効率と最終性能を向上させるために,各種自動カリキュラム学習(ACL)手法が提案されている。
本稿では,多目的だがコヒーレントなカリキュラムを作成するための統合された自動カリキュラム学習フレームワークを提案する。
既存の手設計のカリキュラムパラダイムに加えて,抽象カリキュラムを学習するためのフレキシブルなメモリ機構を設計する。
論文 参考訳(メタデータ) (2021-10-06T19:30:25Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
本稿では,フィードバックを数発の分類として提供するという課題について考察する。
メタラーナーは、インストラクターによるいくつかの例から、新しいプログラミング質問に関する学生のコードにフィードバックを与えるように適応します。
本手法は,第1段階の大学が提供したプログラムコースにおいて,16,000名の学生試験ソリューションに対するフィードバックの提供に成功している。
論文 参考訳(メタデータ) (2021-07-23T22:41:28Z) - Eye: Program Visualizer for CS2 [1.319058156672392]
Eyeはプログラムの実行を視覚化するインタラクティブツールである。
一般的な環境でのデータ構造の特性と利用を実証する。
EyeはCS2の学生がオンラインプログラミングのWebサイトで利用できる無数のプログラムをより容易に理解するためのゲートウェイを開く。
論文 参考訳(メタデータ) (2021-01-28T16:16:59Z) - Securing Bring-Your-Own-Device (BYOD) Programming Exams [1.9164932573056916]
従来のペンと紙の試験は、現代の大学プログラミングコースでは不十分である。
多くの機関は、専用のコンピュータラボでアセスメントを実行するためのリソースやスペースを欠いている。
これにより、BYOD( bring-your-own-device)試験フォーマットの開発が動機となっている。
論文 参考訳(メタデータ) (2020-01-12T15:01:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。