Leveraging Large Language Model as Simulated Patients for Clinical Education
- URL: http://arxiv.org/abs/2404.13066v2
- Date: Thu, 25 Apr 2024 02:39:24 GMT
- Title: Leveraging Large Language Model as Simulated Patients for Clinical Education
- Authors: Yanzeng Li, Cheng Zeng, Jialun Zhong, Ruoyu Zhang, Minhao Zhang, Lei Zou,
- Abstract summary: High cost of training and hiring qualified SPs limit students' access to this type of clinical training.
With the rapid development of Large Language Models (LLMs), their exceptional capabilities in conversational artificial intelligence and role-playing have been demonstrated.
We present an integrated model-agnostic framework called CureFun that harnesses the potential of LLMs in clinical medical education.
- Score: 18.67200160979337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulated Patients (SPs) play a crucial role in clinical medical education by providing realistic scenarios for student practice. However, the high cost of training and hiring qualified SPs, along with the heavy workload and potential risks they face in consistently portraying actual patients, limit students' access to this type of clinical training. Consequently, the integration of computer program-based simulated patients has emerged as a valuable educational tool in recent years. With the rapid development of Large Language Models (LLMs), their exceptional capabilities in conversational artificial intelligence and role-playing have been demonstrated, making them a feasible option for implementing Virtual Simulated Patient (VSP). In this paper, we present an integrated model-agnostic framework called CureFun that harnesses the potential of LLMs in clinical medical education. This framework facilitates natural conversations between students and simulated patients, evaluates their dialogue, and provides suggestions to enhance students' clinical inquiry skills. Through comprehensive evaluations, our approach demonstrates more authentic and professional SP-scenario dialogue flows compared to other LLM-based chatbots, thus proving its proficiency in simulating patients. Additionally, leveraging CureFun's evaluation ability, we assess several medical LLMs and discuss the possibilities and limitations of using LLMs as virtual doctors from the perspective of their diagnostic abilities.
Related papers
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - PALLM: Evaluating and Enhancing PALLiative Care Conversations with Large Language Models [10.258261180305439]
Large language models (LLMs) offer a new approach to assessing complex communication metrics.
LLMs offer the potential to advance the field through integration into passive sensing and just-in-time intervention systems.
This study explores LLMs as evaluators of palliative care communication quality, leveraging their linguistic, in-context learning, and reasoning capabilities.
arXiv Detail & Related papers (2024-09-23T16:39:12Z) - Synthetic Patients: Simulating Difficult Conversations with Multimodal Generative AI for Medical Education [0.0]
Effective patient-centered communication is a core competency for physicians.
Both seasoned providers and medical trainees report decreased confidence in leading conversations on sensitive topics.
We present a novel educational tool designed to facilitate interactive, real-time simulations of difficult conversations in a video-based format.
arXiv Detail & Related papers (2024-05-30T11:02:08Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - Evaluating large language models in medical applications: a survey [1.5923327069574245]
Large language models (LLMs) have emerged as powerful tools with transformative potential across numerous domains.
evaluating the performance of LLMs in medical contexts presents unique challenges due to the complex and critical nature of medical information.
arXiv Detail & Related papers (2024-05-13T05:08:33Z) - Towards Automatic Evaluation for LLMs' Clinical Capabilities: Metric, Data, and Algorithm [15.627870862369784]
Large language models (LLMs) are gaining increasing interests to improve clinical efficiency for medical diagnosis.
We propose an automatic evaluation paradigm tailored to assess the LLMs' capabilities in delivering clinical services.
arXiv Detail & Related papers (2024-03-25T06:17:54Z) - Automatic Interactive Evaluation for Large Language Models with State Aware Patient Simulator [21.60103376506254]
Large Language Models (LLMs) have demonstrated remarkable proficiency in human interactions.
This paper introduces the Automated Interactive Evaluation (AIE) framework and the State-Aware Patient Simulator (SAPS)
AIE and SAPS provide a dynamic, realistic platform for assessing LLMs through multi-turn doctor-patient simulations.
arXiv Detail & Related papers (2024-03-13T13:04:58Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Redefining Digital Health Interfaces with Large Language Models [69.02059202720073]
Large Language Models (LLMs) have emerged as general-purpose models with the ability to process complex information.
We show how LLMs can provide a novel interface between clinicians and digital technologies.
We develop a new prognostic tool using automated machine learning.
arXiv Detail & Related papers (2023-10-05T14:18:40Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridge is a visual analytics tool that seamlessly incorporates machine learning explanations into clinicians' decision-making workflow.
We identified three key challenges, including clinicians' unfamiliarity with ML features, lack of contextual information, and the need for cohort-level evidence.
We demonstrated the effectiveness of VBridge through two case studies and expert interviews with four clinicians.
arXiv Detail & Related papers (2021-08-04T17:34:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.