DensePANet: An improved generative adversarial network for photoacoustic tomography image reconstruction from sparse data
- URL: http://arxiv.org/abs/2404.13101v1
- Date: Fri, 19 Apr 2024 09:52:32 GMT
- Title: DensePANet: An improved generative adversarial network for photoacoustic tomography image reconstruction from sparse data
- Authors: Hesam hakimnejad, Zohreh Azimifar, Narjes Goshtasbi,
- Abstract summary: We propose an end-to-end method called DensePANet to solve the problem of PAT image reconstruction from sparse data.
The proposed model employs a novel modification of UNet in its generator, called FD-UNet++, which considerably improves the reconstruction performance.
- Score: 1.4665304971699265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image reconstruction is an essential step of every medical imaging method, including Photoacoustic Tomography (PAT), which is a promising modality of imaging, that unites the benefits of both ultrasound and optical imaging methods. Reconstruction of PAT images using conventional methods results in rough artifacts, especially when applied directly to sparse PAT data. In recent years, generative adversarial networks (GANs) have shown a powerful performance in image generation as well as translation, rendering them a smart choice to be applied to reconstruction tasks. In this study, we proposed an end-to-end method called DensePANet to solve the problem of PAT image reconstruction from sparse data. The proposed model employs a novel modification of UNet in its generator, called FD-UNet++, which considerably improves the reconstruction performance. We evaluated the method on various in-vivo and simulated datasets. Quantitative and qualitative results show the better performance of our model over other prevalent deep learning techniques.
Related papers
- Multi-Branch Generative Models for Multichannel Imaging with an Application to PET/CT Synergistic Reconstruction [42.95604565673447]
This paper presents a novel approach for learned synergistic reconstruction of medical images using multi-branch generative models.
We demonstrate the efficacy of our approach on both Modified National Institute of Standards and Technology (MNIST) and positron emission tomography (PET)/ computed tomography (CT) datasets.
arXiv Detail & Related papers (2024-04-12T18:21:08Z) - Analysis of Deep Image Prior and Exploiting Self-Guidance for Image
Reconstruction [13.277067849874756]
We study how DIP recovers information from undersampled imaging measurements.
We introduce a self-driven reconstruction process that concurrently optimize both the network weights and the input.
Our method incorporates a novel denoiser regularization term which enables robust and stable joint estimation of both the network input and reconstructed image.
arXiv Detail & Related papers (2024-02-06T15:52:23Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Enhancing Low-dose CT Image Reconstruction by Integrating Supervised and
Unsupervised Learning [13.17680480211064]
We propose a hybrid supervised-unsupervised learning framework for X-ray computed tomography (CT) image reconstruction.
Each proposed trained block consists of a deterministic MBIR solver and a neural network.
We demonstrate the efficacy of this learned hybrid model for low-dose CT image reconstruction with limited training data.
arXiv Detail & Related papers (2023-11-19T20:23:59Z) - Diffusion Reconstruction of Ultrasound Images with Informative
Uncertainty [5.375425938215277]
Enhancing ultrasound image quality involves balancing concurrent factors like contrast, resolution, and speckle preservation.
We propose a hybrid approach leveraging advances in diffusion models.
We conduct comprehensive experiments on simulated, in-vitro, and in-vivo data, demonstrating the efficacy of our approach.
arXiv Detail & Related papers (2023-10-31T16:51:40Z) - Reconstruction Distortion of Learned Image Compression with
Imperceptible Perturbations [69.25683256447044]
We introduce an attack approach designed to effectively degrade the reconstruction quality of Learned Image Compression (LIC)
We generate adversarial examples by introducing a Frobenius norm-based loss function to maximize the discrepancy between original images and reconstructed adversarial examples.
Experiments conducted on the Kodak dataset using various LIC models demonstrate effectiveness.
arXiv Detail & Related papers (2023-06-01T20:21:05Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
Deep image prior was introduced as an effective prior for image reconstruction.
Despite its impressive reconstructive properties, the approach is slow when compared to learned or traditional reconstruction techniques.
We develop a two-stage learning paradigm to address the computational challenge.
arXiv Detail & Related papers (2021-11-23T15:08:26Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Learned Spectral Computed Tomography [0.0]
We propose a Deep Learning imaging method for Spectral Photon-Counting Computed Tomography.
The method takes the form of a two-step learned primal-dual algorithm that is trained using case-specific data.
The proposed approach is characterised by fast reconstruction capability and high imaging performance, even in limited-data cases.
arXiv Detail & Related papers (2020-03-09T13:39:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.