論文の概要: Multi Class Depression Detection Through Tweets using Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2404.13104v1
- Date: Fri, 19 Apr 2024 12:47:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 20:28:09.474369
- Title: Multi Class Depression Detection Through Tweets using Artificial Intelligence
- Title(参考訳): 人工知能を用いたつぶやきによるマルチクラス抑うつ検出
- Authors: Muhammad Osama Nusrat, Waseem Shahzad, Saad Ahmed Jamal,
- Abstract要約: 5種類のうつ病(バイポーラ、メジャー、サイコティック、非定型、ポストパルタ)を、レキシコンラベルに基づくTwitterデータベースからのツイートで予測した。
特徴抽出と訓練にはBERT(Bidirectional Representations from Transformers)が用いられた。
BERTモデルは最も有望な結果を示し、全体的な精度は0.96である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Depression is a significant issue nowadays. As per the World Health Organization (WHO), in 2023, over 280 million individuals are grappling with depression. This is a huge number; if not taken seriously, these numbers will increase rapidly. About 4.89 billion individuals are social media users. People express their feelings and emotions on platforms like Twitter, Facebook, Reddit, Instagram, etc. These platforms contain valuable information which can be used for research purposes. Considerable research has been conducted across various social media platforms. However, certain limitations persist in these endeavors. Particularly, previous studies were only focused on detecting depression and the intensity of depression in tweets. Also, there existed inaccuracies in dataset labeling. In this research work, five types of depression (Bipolar, major, psychotic, atypical, and postpartum) were predicted using tweets from the Twitter database based on lexicon labeling. Explainable AI was used to provide reasoning by highlighting the parts of tweets that represent type of depression. Bidirectional Encoder Representations from Transformers (BERT) was used for feature extraction and training. Machine learning and deep learning methodologies were used to train the model. The BERT model presented the most promising results, achieving an overall accuracy of 0.96.
- Abstract(参考訳): 近年、うつ病は重大な問題となっている。
世界保健機関(WHO)によると、2023年には2億8000万人がうつ病に悩まされている。
これは膨大な数であり、真剣に考えなければ、これらの数は急速に増加するだろう。
約490億人がソーシャルメディア利用者である。
人々はTwitter、Facebook、Reddit、Instagramなどのプラットフォームで感情や感情を表現する。
これらのプラットフォームには、研究目的で使用できる貴重な情報が含まれている。
様々なソーシャルメディアプラットフォームで検討が続けられている。
しかし、これらの取り組みには一定の制限が持続する。
特に、過去の研究では、ツイートにおける抑うつと抑うつの強さを検出することだけに焦点が当てられていた。
また、データセットのラベル付けには不正確さがあった。
本研究は,5種類のうつ病(バイポーラ,メジャー,サイコティック,非定型,ポストパルタ)を,レキシコンラベルに基づくTwitterデータベースからのつぶやきを用いて予測した。
説明可能なAIは、うつ病のタイプを表すツイートの一部をハイライトすることで推論を提供するために使用された。
特徴抽出とトレーニングにはBERT(Bidirectional Encoder Representations from Transformers)が用いられた。
モデルのトレーニングには機械学習とディープラーニングの方法論が使用された。
BERTモデルは最も有望な結果を示し、全体的な精度は0.96である。
関連論文リスト
- Exploring Social Media Posts for Depression Identification: A Study on Reddit Dataset [0.0]
うつ病は個人の個人的および専門的な生活に影響を与える最も一般的な精神疾患の1つである。
本研究では,個人のうつ病を識別するためのソーシャルメディア投稿の活用の可能性について検討した。
論文 参考訳(メタデータ) (2024-04-16T06:25:51Z) - Cordyceps@LT-EDI: Depression Detection with Reddit and Self-training [0.0]
うつ病は不安定であり、まれではない。事実、過度のソーシャルメディア利用者の研究は、うつ病、ADHD、その他のメンタルヘルスの懸念と相関している。
本研究では,重度,中等度,低レベルのうつ病を経験しているユーザからの投稿を予測するために,半教師付き学習技術を用いた重度うつ病検出システムを提案する。
論文 参考訳(メタデータ) (2023-09-24T01:14:49Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
ソーシャルメディア投稿からの抑うつ検出のための奥深いアーキテクチャを提案する。
我々は、後期融合方式を用いて、ポストとワードの敬称と道徳的特徴をアーキテクチャに組み込んだ。
提案された機能を含めると、両方の設定で最先端の結果が得られます。
論文 参考訳(メタデータ) (2023-03-24T21:26:27Z) - Machine Learning Algorithms for Depression Detection and Their
Comparison [0.0]
我々は、ソーシャルメディア利用者の行動を分析して、オンラインソーシャルメディア利用者の自動抑うつ検知を設計した。
その根底にある分類器は、感情的人工知能の最先端技術を使って作られている。
論文 参考訳(メタデータ) (2023-01-09T09:34:38Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
本稿では、ソーシャルメディアの文章に基づいて、個人のうつ病の重症度を研究するための効率的なセマンティックパイプラインを提案する。
我々は,抑うつ症状と重度レベルに対応する代表訓練文の指標に対して意味的ランキングを生成するために,テストユーザ文を使用する。
本手法を2つのRedditベースのベンチマークで評価し,うつ病の重症度を指標として,最先端技術よりも30%改善した。
論文 参考訳(メタデータ) (2022-11-14T18:47:26Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
世界保健機関(WHO)によると、約4億5000万人が影響を受ける。
うつ病、不安症、双極性障害、ADHD、PTSDなどの精神疾患。
本研究では、Redditプラットフォーム上の非構造化ユーザデータを分析し、うつ病、不安、双極性障害、ADHD、PTSDの5つの一般的な精神疾患を分類する。
論文 参考訳(メタデータ) (2022-07-03T11:33:52Z) - Data set creation and empirical analysis for detecting signs of
depression from social media postings [0.0]
うつ病は、深刻な結果を避けるために、早期に検出され治療されなければならない一般的な精神疾患である。
我々は、ソーシャルメディアの投稿から、うつ病のレベルが落ち込んでいないこと、中程度に落ち込んでいないこと、および深刻な落ち込んでいないことを検知する、金の標準データセットを開発した。
論文 参考訳(メタデータ) (2022-02-07T10:24:33Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
うつ病は最も多い精神疾患の1つであり、世界中の年齢の何百万人もの人々に影響を与えている。
機械学習技術は、早期介入と治療のためのうつ病の自動検出と予測を可能にしている。
本稿では、この課題に対処するために、2つの補助的タスクでうつ病分類を共同最適化する、新しいディープマルチタスクリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-05T05:14:14Z) - Detecting Perceived Emotions in Hurricane Disasters [62.760131661847986]
私たちはHurricaneEmoを紹介します。HurricaneEmoは、Harvey、Irma、Mariaの3つのハリケーンにまたがる15,000の英語ツイートの感情データセットです。
本稿では, きめ細かい感情を包括的に研究し, 粗い感情群を識別するための分類タスクを提案する。
論文 参考訳(メタデータ) (2020-04-29T16:17:49Z) - Machine Learning-based Approach for Depression Detection in Twitter
Using Content and Activity Features [0.0]
近年の研究では、ソーシャルメディアサイトの利用率とうつ病の増加の相関が示されている。
本研究の目的は、ネットワークの振る舞いとつぶやきの両方に基づいて、潜在的に落ち込んだTwitterユーザーを検出する機械学習技術を活用することである。
論文 参考訳(メタデータ) (2020-03-09T11:27:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。