論文の概要: Machine Learning-based Approach for Depression Detection in Twitter
Using Content and Activity Features
- arxiv url: http://arxiv.org/abs/2003.04763v1
- Date: Mon, 9 Mar 2020 11:27:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-25 08:33:19.006899
- Title: Machine Learning-based Approach for Depression Detection in Twitter
Using Content and Activity Features
- Title(参考訳): コンテンツとアクティビティ機能を用いたtwitterにおける抑うつ検出のための機械学習アプローチ
- Authors: Hatoon S. AlSagri, Mourad Ykhlef
- Abstract要約: 近年の研究では、ソーシャルメディアサイトの利用率とうつ病の増加の相関が示されている。
本研究の目的は、ネットワークの振る舞いとつぶやきの両方に基づいて、潜在的に落ち込んだTwitterユーザーを検出する機械学習技術を活用することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media channels, such as Facebook, Twitter, and Instagram, have altered
our world forever. People are now increasingly connected than ever and reveal a
sort of digital persona. Although social media certainly has several remarkable
features, the demerits are undeniable as well. Recent studies have indicated a
correlation between high usage of social media sites and increased depression.
The present study aims to exploit machine learning techniques for detecting a
probable depressed Twitter user based on both, his/her network behavior and
tweets. For this purpose, we trained and tested classifiers to distinguish
whether a user is depressed or not using features extracted from his/ her
activities in the network and tweets. The results showed that the more features
are used, the higher are the accuracy and F-measure scores in detecting
depressed users. This method is a data-driven, predictive approach for early
detection of depression or other mental illnesses. This study's main
contribution is the exploration part of the features and its impact on
detecting the depression level.
- Abstract(参考訳): facebook、twitter、instagramなどのソーシャルメディアチャンネルは、われわれの世界を永遠に変えてきた。
今や人々はますますつながり、ある種のデジタルペルソナを公開している。
ソーシャルメディアには注目すべき特徴がいくつかあるが、デメリットも否定できない。
近年の研究では、ソーシャルメディアサイトの高利用と抑うつの増加の相関が示されている。
本研究の目的は、ネットワークの振る舞いとつぶやきの両方に基づいて、潜在的に落ち込んだTwitterユーザーを検出する機械学習技術を活用することである。
この目的のために,ネットワーク上での活動やつぶやきから抽出した特徴を用いて,ユーザが抑うつ状態にあるかどうかを識別するために,分類器を訓練し,テストした。
その結果、より多くの特徴が使用されるほど、抑うつユーザを検出する際の精度とF測定スコアが高くなることがわかった。
この方法は、うつ病や他の精神疾患を早期に検出するためのデータ駆動予測手法である。
本研究の主な貢献は, 特徴の探索部分と, うつ病レベルの検出に対する影響である。
関連論文リスト
- Multi Class Depression Detection Through Tweets using Artificial Intelligence [0.0]
5種類のうつ病(バイポーラ、メジャー、サイコティック、非定型、ポストパルタ)を、レキシコンラベルに基づくTwitterデータベースからのツイートで予測した。
特徴抽出と訓練にはBERT(Bidirectional Representations from Transformers)が用いられた。
BERTモデルは最も有望な結果を示し、全体的な精度は0.96である。
論文 参考訳(メタデータ) (2024-04-19T12:47:56Z) - Cordyceps@LT-EDI: Depression Detection with Reddit and Self-training [0.0]
うつ病は不安定であり、まれではない。事実、過度のソーシャルメディア利用者の研究は、うつ病、ADHD、その他のメンタルヘルスの懸念と相関している。
本研究では,重度,中等度,低レベルのうつ病を経験しているユーザからの投稿を予測するために,半教師付き学習技術を用いた重度うつ病検出システムを提案する。
論文 参考訳(メタデータ) (2023-09-24T01:14:49Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
ソーシャルメディア投稿からの抑うつ検出のための奥深いアーキテクチャを提案する。
我々は、後期融合方式を用いて、ポストとワードの敬称と道徳的特徴をアーキテクチャに組み込んだ。
提案された機能を含めると、両方の設定で最先端の結果が得られます。
論文 参考訳(メタデータ) (2023-03-24T21:26:27Z) - Machine Learning Algorithms for Depression Detection and Their
Comparison [0.0]
我々は、ソーシャルメディア利用者の行動を分析して、オンラインソーシャルメディア利用者の自動抑うつ検知を設計した。
その根底にある分類器は、感情的人工知能の最先端技術を使って作られている。
論文 参考訳(メタデータ) (2023-01-09T09:34:38Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
本稿では、ソーシャルメディアの文章に基づいて、個人のうつ病の重症度を研究するための効率的なセマンティックパイプラインを提案する。
我々は,抑うつ症状と重度レベルに対応する代表訓練文の指標に対して意味的ランキングを生成するために,テストユーザ文を使用する。
本手法を2つのRedditベースのベンチマークで評価し,うつ病の重症度を指標として,最先端技術よりも30%改善した。
論文 参考訳(メタデータ) (2022-11-14T18:47:26Z) - Data set creation and empirical analysis for detecting signs of
depression from social media postings [0.0]
うつ病は、深刻な結果を避けるために、早期に検出され治療されなければならない一般的な精神疾患である。
我々は、ソーシャルメディアの投稿から、うつ病のレベルが落ち込んでいないこと、中程度に落ち込んでいないこと、および深刻な落ち込んでいないことを検知する、金の標準データセットを開発した。
論文 参考訳(メタデータ) (2022-02-07T10:24:33Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - Learning Language and Multimodal Privacy-Preserving Markers of Mood from
Mobile Data [74.60507696087966]
精神状態は、先進医療に共通する国でも診断されていない。
人間の行動を監視するための有望なデータソースのひとつは、日々のスマートフォンの利用だ。
本研究では,自殺行動のリスクが高い青少年集団の移動行動のデータセットを用いて,日常生活の行動マーカーについて検討した。
論文 参考訳(メタデータ) (2021-06-24T17:46:03Z) - Two-Faced Humans on Twitter and Facebook: Harvesting Social Multimedia
for Human Personality Profiling [74.83957286553924]
我々は、"PERS"と呼ばれる新しい多視点融合フレームワークを適用して、マイアーズ・ブリッグス・パーソナリティ・タイプインジケータを推定する。
実験の結果,多視点データからパーソナリティ・プロファイリングを学習する能力は,多様なソーシャル・マルチメディア・ソースからやってくるデータを効率的に活用できることが示唆された。
論文 参考訳(メタデータ) (2021-06-20T10:48:49Z) - DepressionNet: A Novel Summarization Boosted Deep Framework for
Depression Detection on Social Media [12.820775223409857]
Twitterは、ユーザーが生成したコンテンツを共有できる人気のオンラインソーシャルメディアプラットフォームである。
応用の1つは、うつ病などの精神疾患を自動的に発見することである。
オンラインソーシャルメディア上で、抑うつされたユーザーを自動的に検出する以前の研究は、ユーザー行動と言語パターンに大きく依存している。
論文 参考訳(メタデータ) (2021-05-23T08:05:53Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
うつ病は最も多い精神疾患の1つであり、世界中の年齢の何百万人もの人々に影響を与えている。
機械学習技術は、早期介入と治療のためのうつ病の自動検出と予測を可能にしている。
本稿では、この課題に対処するために、2つの補助的タスクでうつ病分類を共同最適化する、新しいディープマルチタスクリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-05T05:14:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。