論文の概要: Towards quantum computing for clinical trial design and optimization: A perspective on new opportunities and challenges
- arxiv url: http://arxiv.org/abs/2404.13113v1
- Date: Fri, 19 Apr 2024 18:00:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 20:18:24.790466
- Title: Towards quantum computing for clinical trial design and optimization: A perspective on new opportunities and challenges
- Title(参考訳): 臨床治験設計と最適化のための量子コンピューティングに向けて:新しい機会と課題をめざして
- Authors: Hakan Doga, M. Emre Sahin, Joao Bettencourt-Silva, Anh Pham, Eunyoung Kim, Alan Andress, Sudhir Saxena, Aritra Bose, Laxmi Parida, Jan Lukas Robertus, Hideaki Kawaguchi, Radwa Soliman, Daniel Blankenberg,
- Abstract要約: 本稿では,臨床治験設計および最適化における現状の課題について検討する。
焦点は、臨床試験シミュレーション、サイト選択、コホート識別の3つの重要な側面に焦点を当てている。
- 参考スコア(独自算出の注目度): 0.250217476520467
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clinical trials are pivotal in the drug discovery process to determine the safety and efficacy of a drug candidate. The high failure rates of these trials are attributed to deficiencies in clinical model development and protocol design. Improvements in the clinical drug design process could therefore yield significant benefits for all stakeholders involved. This paper examines the current challenges faced in clinical trial design and optimization, reviews established classical computational approaches, and introduces quantum algorithms aimed at enhancing these processes. Specifically, the focus is on three critical aspects: clinical trial simulations, site selection, and cohort identification. This study aims to provide a comprehensive framework that leverages quantum computing to innovate and refine the efficiency and effectiveness of clinical trials.
- Abstract(参考訳): 薬物発見プロセスにおける臨床試験は、薬物候補の安全性と有効性を決定するために重要である。
これらの臨床試験の失敗率の高さは、臨床モデルの開発とプロトコル設計の欠陥に起因する。
臨床薬品設計プロセスの改善は、関係するすべての利害関係者に大きな利益をもたらす可能性がある。
本稿では,臨床トライアル設計と最適化における現状の課題,古典的計算手法の確立,これらのプロセスの強化を目的とした量子アルゴリズムの導入について検討する。
具体的には、臨床試験シミュレーション、サイト選択、コホート識別の3つの重要な側面に焦点を当てている。
本研究の目的は、量子コンピューティングを活用して、臨床試験の効率性と効果を革新し、改善する包括的枠組みを提供することである。
関連論文リスト
- TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - Language Interaction Network for Clinical Trial Approval Estimation [37.60098683485169]
本稿では,言語相互作用ネットワーク(LINT, Language Interaction Network)について紹介する。
臨床治験の3段階にわたって厳格にLINTを試験し,ROC-AUCスコアは0.770,0.740,0.748となった。
論文 参考訳(メタデータ) (2024-04-26T14:50:59Z) - TrialDura: Hierarchical Attention Transformer for Interpretable Clinical Trial Duration Prediction [19.084936647082632]
マルチモーダルデータを用いて臨床試験期間を推定する機械学習に基づくTrialDuraを提案する。
バイオメディカルコンテキストに特化されたBio-BERT埋め込みにエンコードして,より深く,より関連するセマンティック理解を提供する。
提案モデルでは, 平均絶対誤差(MAE)が1.04年, 根平均二乗誤差(RMSE)が1.39年であった。
論文 参考訳(メタデータ) (2024-04-20T02:12:59Z) - PyTrial: Machine Learning Software and Benchmark for Clinical Trial
Applications [49.69824178329405]
PyTrialは、臨床試験の設計と運用のための一連の機械学習アルゴリズムのベンチマークとオープンソース実装を提供する。
患者結果予測,臨床試験サイト選択,トライアル結果予測,患者と臨床のマッチング,トライアル類似性検索,合成データ生成など,6つのタスクにわたる臨床試験のための34のMLアルゴリズムを網羅的に検討した。
PyTrialは、データローディング、モデル仕様、モデルトレーニング、モデル評価という、単純な4段階のプロセスで各タスクを定義します。
論文 参考訳(メタデータ) (2023-06-06T21:19:03Z) - AutoTrial: Prompting Language Models for Clinical Trial Design [53.630479619856516]
本稿では,言語モデルを用いた臨床検査基準の設計を支援するAutoTrialという手法を提案する。
70K以上の臨床試験で、AutoTrialが高品質な基準テキストを生成することが確認された。
論文 参考訳(メタデータ) (2023-05-19T01:04:16Z) - Improved clinical data imputation via classical and quantum
determinantal point processes [1.3749490831384268]
データの警告は、機械学習の実践者にとって重要な問題である。
本稿では,決定点過程に基づく新しい計算法を提案する。
小型計算タスクに対して最大10キュービットの競合結果を示す。
論文 参考訳(メタデータ) (2023-03-31T08:54:46Z) - Artificial Intelligence for In Silico Clinical Trials: A Review [41.85196749088317]
サイリコ臨床試験(英:silico trial)は、シミュレーションとモデリングを通じてデジタル的に行われる臨床試験である。
本稿では,臨床シミュレーション,個別化予測モデル,コンピュータ支援トライアルデザインの3つの主要なトピックで論文を体系的にレビューする。
論文 参考訳(メタデータ) (2022-09-16T14:59:31Z) - Adaptive Identification of Populations with Treatment Benefit in
Clinical Trials: Machine Learning Challenges and Solutions [78.31410227443102]
確定的臨床試験において,特定の治療の恩恵を受ける患者サブポピュレーションを適応的に同定する問題について検討した。
サブポピュレーション構築のためのメタアルゴリズムであるAdaGGIとAdaGCPIを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:27:49Z) - Optimal personalised treatment computation through in silico clinical
trials on patient digital twins [0.0]
知的検索によって導かれる広範囲なコンピュータシミュレーションに基づく実験的キャンペーン(ISTC)により、個々の患者の薬理学的治療(精密医療)を最適化する手法とアルゴリズムを提案する。
本研究は, 実薬理学的治療を含む症例研究, すなわち, ヒトの再生支援のための複雑な臨床プロトコルの減量段階における有効性を示すものである。
論文 参考訳(メタデータ) (2021-06-20T12:12:36Z) - Learning for Dose Allocation in Adaptive Clinical Trials with Safety
Constraints [84.09488581365484]
新しい化合物の有効性と毒性の関係がより複雑になるにつれて、第1相線量測定試験はますます困難になっている。
最も一般的に使われている方法は、毒性事象のみから学習することで、最大許容量(MTD)を特定することである。
本稿では, 毒性安全性の制約を高い確率で満たしつつ, 累積効果を最大化することを目的とした, 適応型臨床試験手法を提案する。
論文 参考訳(メタデータ) (2020-06-09T03:06:45Z) - Contextual Constrained Learning for Dose-Finding Clinical Trials [102.8283665750281]
C3T-Budget(C3T-Budget)は、予算と安全性の両方の制約の下での線量フィリングのための文脈制約付き臨床試験アルゴリズムである。
残りの予算、残業時間、各グループの特徴を考慮して患者を募集する。
論文 参考訳(メタデータ) (2020-01-08T11:46:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。