Beyond Self-Consistency: Ensemble Reasoning Boosts Consistency and Accuracy of LLMs in Cancer Staging
- URL: http://arxiv.org/abs/2404.13149v1
- Date: Fri, 19 Apr 2024 19:34:35 GMT
- Title: Beyond Self-Consistency: Ensemble Reasoning Boosts Consistency and Accuracy of LLMs in Cancer Staging
- Authors: Chia-Hsuan Chang, Mary M. Lucas, Yeawon Lee, Christopher C. Yang, Grace Lu-Yao,
- Abstract summary: Cancer staging status is available in clinical reports, but it requires natural language processing to extract it.
With the advance in clinical-oriented large language models, it is promising to extract such status without extensive efforts in training the algorithms.
In this study, we propose an ensemble reasoning approach with the aim of improving the consistency of the model generations.
- Score: 0.33554367023486936
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in large language models (LLMs) have encouraged their adoption in the healthcare domain where vital clinical information is often contained in unstructured notes. Cancer staging status is available in clinical reports, but it requires natural language processing to extract the status from the unstructured text. With the advance in clinical-oriented LLMs, it is promising to extract such status without extensive efforts in training the algorithms. Prompting approaches of the pre-trained LLMs that elicit a model's reasoning process, such as chain-of-thought, may help to improve the trustworthiness of the generated responses. Using self-consistency further improves model performance, but often results in inconsistent generations across the multiple reasoning paths. In this study, we propose an ensemble reasoning approach with the aim of improving the consistency of the model generations. Using an open access clinical large language model to determine the pathologic cancer stage from real-world pathology reports, we show that the ensemble reasoning approach is able to improve both the consistency and performance of the LLM in determining cancer stage, thereby demonstrating the potential to use these models in clinical or other domains where reliability and trustworthiness are critical.
Related papers
- Enhancing In-Hospital Mortality Prediction Using Multi-Representational Learning with LLM-Generated Expert Summaries [3.5508427067904864]
In-hospital mortality (IHM) prediction for ICU patients is critical for timely interventions and efficient resource allocation.
This study integrates structured physiological data and clinical notes with Large Language Model (LLM)-generated expert summaries to improve IHM prediction accuracy.
arXiv Detail & Related papers (2024-11-25T16:36:38Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - The Role of Language Models in Modern Healthcare: A Comprehensive Review [2.048226951354646]
The application of large language models (LLMs) in healthcare has gained significant attention.
This review examines the trajectory of language models from their early stages to the current state-of-the-art LLMs.
arXiv Detail & Related papers (2024-09-25T12:15:15Z) - PALLM: Evaluating and Enhancing PALLiative Care Conversations with Large Language Models [10.258261180305439]
Large language models (LLMs) offer a new approach to assessing complex communication metrics.
LLMs offer the potential to advance the field through integration into passive sensing and just-in-time intervention systems.
This study explores LLMs as evaluators of palliative care communication quality, leveraging their linguistic, in-context learning, and reasoning capabilities.
arXiv Detail & Related papers (2024-09-23T16:39:12Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - XAI4LLM. Let Machine Learning Models and LLMs Collaborate for Enhanced In-Context Learning in Healthcare [16.79952669254101]
We develop a novel method for zero-shot/few-shot in-context learning (ICL) using a multi-layered structured prompt.
We also explore the efficacy of two communication styles between the user and Large Language Models (LLMs)
Our study systematically evaluates the diagnostic accuracy and risk factors, including gender bias and false negative rates.
arXiv Detail & Related papers (2024-05-10T06:52:44Z) - Natural Language Programming in Medicine: Administering Evidence Based Clinical Workflows with Autonomous Agents Powered by Generative Large Language Models [29.05425041393475]
Generative Large Language Models (LLMs) hold significant promise in healthcare.
This study assessed the potential of LLMs to function as autonomous agents in a simulated tertiary care medical center.
arXiv Detail & Related papers (2024-01-05T15:09:57Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
Vision-language models (VLMs) have recently demonstrated strong efficacy as visual assistants that can generate human-like outputs.
We evaluate existing state-of-the-art VLMs and find that even the best-performing model is unable to demonstrate strong visual reasoning capabilities and consistency.
We propose a two-stage training framework aimed at improving both the reasoning performance and consistency of VLMs.
arXiv Detail & Related papers (2023-09-08T17:49:44Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.