論文の概要: The Instruction Hierarchy: Training LLMs to Prioritize Privileged Instructions
- arxiv url: http://arxiv.org/abs/2404.13208v1
- Date: Fri, 19 Apr 2024 22:55:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 19:58:55.216524
- Title: The Instruction Hierarchy: Training LLMs to Prioritize Privileged Instructions
- Title(参考訳): 教育階層: 特権的指導を優先するLLMの訓練
- Authors: Eric Wallace, Kai Xiao, Reimar Leike, Lilian Weng, Johannes Heidecke, Alex Beutel,
- Abstract要約: LLMは、インジェクション、ジェイルブレイク、その他の攻撃に対して感受性があり、敵は自身の悪意のあるプロンプトでモデルのオリジナルの命令を上書きできる。
本稿では,異なる優先度の命令が矛盾する場合に,モデルがどのように振る舞うかを明確に定義する命令階層を提案する。
この手法をGPT-3.5に適用すると、トレーニング中に見えない攻撃タイプに対してさえ、ロバスト性を大幅に向上すると同時に、標準機能に最小限の劣化を課すことが示される。
- 参考スコア(独自算出の注目度): 21.76697662025996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Today's LLMs are susceptible to prompt injections, jailbreaks, and other attacks that allow adversaries to overwrite a model's original instructions with their own malicious prompts. In this work, we argue that one of the primary vulnerabilities underlying these attacks is that LLMs often consider system prompts (e.g., text from an application developer) to be the same priority as text from untrusted users and third parties. To address this, we propose an instruction hierarchy that explicitly defines how models should behave when instructions of different priorities conflict. We then propose a data generation method to demonstrate this hierarchical instruction following behavior, which teaches LLMs to selectively ignore lower-privileged instructions. We apply this method to GPT-3.5, showing that it drastically increases robustness -- even for attack types not seen during training -- while imposing minimal degradations on standard capabilities.
- Abstract(参考訳): 今日のLLMは、インジェクション、ジェイルブレイク、その他の攻撃によって、敵が自身の悪意のあるプロンプトでモデルのオリジナルの命令を上書きできる可能性がある。
このような攻撃の根底にある主要な脆弱性の1つは、LLMがシステムプロンプト(例えば、アプリケーション開発者からのテキスト)を信頼できないユーザやサードパーティからのテキストと同じ優先順位であると考えることにある。
そこで本研究では,異なる優先度の命令が矛盾する場合に,モデルがどのように振る舞うかを明確に定義する命令階層を提案する。
そこで我々は,LLMに低特権な命令を選択的に無視するように教える,この階層的命令に従う動作を示すデータ生成手法を提案する。
この手法をGPT-3.5に適用すると、トレーニング中に見えない攻撃タイプに対してさえ、ロバスト性を大幅に向上すると同時に、標準機能に最小限の劣化を課すことが示される。
関連論文リスト
- Instructional Segment Embedding: Improving LLM Safety with Instruction Hierarchy [53.54777131440989]
LLM(Large Language Models)は、セキュリティや安全性の脅威を受けやすい言語である。
これらの脆弱性の大きな原因の1つは、命令階層の欠如である。
本稿では,BERTにインスパイアされた命令セグメント埋め込み(ISE)技法を,現代の大規模言語モデルに導入する。
論文 参考訳(メタデータ) (2024-10-09T12:52:41Z) - Aligning LLMs to Be Robust Against Prompt Injection [55.07562650579068]
インジェクション攻撃に対してLCMをより堅牢にするための強力なツールとしてアライメントが有効であることを示す。
私たちのメソッド -- SecAlign -- は、最初に、プロンプトインジェクション攻撃をシミュレートしてアライメントデータセットを構築します。
実験の結果,SecAlign は LLM を大幅に強化し,モデルの実用性に悪影響を及ぼすことが示された。
論文 参考訳(メタデータ) (2024-10-07T19:34:35Z) - MaPPing Your Model: Assessing the Impact of Adversarial Attacks on LLM-based Programming Assistants [14.947665219536708]
本稿では,攻撃者がプログラムタスクのプロンプトに少量のテキストを付加するMalicious Programming Prompt(MaPP)攻撃を紹介する。
我々の迅速な戦略は、LSMが他の方法で正しいコードを書き続けながら脆弱性を追加する可能性があることを示しています。
論文 参考訳(メタデータ) (2024-07-12T22:30:35Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
textbfAdaptive textbfShield Promptingを提案する。これは、MLLMを構造ベースのジェイルブレイク攻撃から守るための防御プロンプトで入力をプリペイドする。
我々の手法は、構造に基づくジェイルブレイク攻撃に対するMLLMの堅牢性を一貫して改善することができる。
論文 参考訳(メタデータ) (2024-03-14T15:57:13Z) - Instruction Backdoor Attacks Against Customized LLMs [37.92008159382539]
我々は、信頼できないカスタマイズ LLM と統合されたアプリケーションに対して、最初の命令バックドアアタックを提案する。
私たちの攻撃には、単語レベル、構文レベル、意味レベルという3つのレベルの攻撃が含まれています。
本稿では,2つの防衛戦略を提案し,その効果を実証する。
論文 参考訳(メタデータ) (2024-02-14T13:47:35Z) - StruQ: Defending Against Prompt Injection with Structured Queries [10.22774624798198]
大きな言語モデル(LLM)は、高度な言語理解機能を利用することで、テキストベースのタスクを実行できる。
プロンプトインジェクション攻撃は重要な脅威であり、それらはモデルを騙して元のアプリケーションの命令から逸脱させ、代わりにユーザーディレクティブに従う。
この問題に対処するための一般的なアプローチである構造化クエリを導入する。
本システムでは, インジェクション攻撃に対する抵抗性を著しく改善し, 実用性にはほとんど, あるいは全く影響を与えない。
論文 参考訳(メタデータ) (2024-02-09T12:15:51Z) - From Language Modeling to Instruction Following: Understanding the Behavior Shift in LLMs after Instruction Tuning [63.63840740526497]
そこで本研究では,本質的な変化に着目した事前学習モデルの調整方法について検討する。
次に、事前訓練されたモデルと命令調整されたモデルから導かれた説明を比較することで、命令チューニングの影響について研究する。
この結果から,指導指導の3つの重要な影響が明らかになった。
論文 参考訳(メタデータ) (2023-09-30T21:16:05Z) - Evaluating the Instruction-Following Robustness of Large Language Models
to Prompt Injection [70.28425745910711]
LLM(Large Language Models)は、命令追従に非常に熟練した言語である。
この能力は、迅速なインジェクション攻撃のリスクをもたらす。
このような攻撃に対する命令追従LDMの堅牢性を評価する。
論文 参考訳(メタデータ) (2023-08-17T06:21:50Z) - Enhancing Large Language Models Against Inductive Instructions with
Dual-critique Prompting [55.15697111170836]
本稿では,大規模言語モデル(LLM)のテクスト誘導的指示に対する行動を明らかにするとともに,その真しさと有用性を高める。
広範囲な人的・自動的な評価の結果,帰納的命令処理において LLM に共通する脆弱性が発見された。
異なる帰納的スタイルがモデルに同じエラーを識別する能力に影響を及ぼし、基礎となる仮定の複雑さがモデルの性能にも影響を及ぼす。
論文 参考訳(メタデータ) (2023-05-23T06:38:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。